

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MIGRATION OF A REAL-TIME OPTIMAL-CONTROL
ALGORITHM: FROM MATLABTM TO FIELD

PROGRAMMABLE GATE ARRAY (FPGA)

by

Ron L. Moon II

December 2005

 Thesis Advisor: I. Michael Ross
 Thesis Co-Advisor: Herschel H. Loomis

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2005

3. REPORT TYPE AND DATES COVERED
Astronautical Engineering Master’s Thesis

4. TITLE AND SUBTITLE:
Migration of a Real-time Optimal-control Algorithm: from MATLABtm to Field
Programmable Gate Array (FPGA)
6. AUTHOR(S): Ron L. Moon II

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES: The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis presents an overarching plan to migrate a time-optimal spacecraft control algorithm from the MATLABTM

development environment into an FPGA-based embedded-platform development board. Research at the Naval Postgraduate
School has produced a revolutionary time-optimal spacecraft control algorithm based upon the Legendre Pseudospectral
method. Currently, the control algorithm is dependent on the MATLABTM environment, a fourth generation language (4GL).
4GLs are powerful high-level abstraction and development tools, but are not efficiently instantiated into an embedded system.
This study establishes three distinct development phases to migrate the algorithm from 4GL dependency to embedded
operation. The first phase removes the algorithm’s dependency on the 4GL environment by translating the algorithm into the C
programming language. The second development phase compiles and embeds the algorithm into an FPGA-based development
board. The final development phase introduces a custom computing machine (CCM) instantiated in an FPGA to reduce the
control calculation time, thereby broadening the algorithm’s potential application.

15. NUMBER OF
PAGES

113

14. SUBJECT TERMS
Satellite Control, Optimal Control, DIDO, Legendre Pseudospectral Method, FPGA, Custom
Computing Machine, Embedded Computing

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

MIGRATION OF A REAL-TIME OPTIMAL-CONTROL ALGORITHM: FROM
MATLABTM TO FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Ron L. Moon, II

Lieutenant Commander, United States Navy
B.S., Vanderbilt University, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2005

Author: Ron L. Moon, II

Approved by: I. Michael Ross

Thesis Advisor

Herschel H. Loomis
Co-Advisor

Anthony J. Healey
Chairman, Department of Mechanical and Astronautical
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis presents an overarching plan to migrate a time-optimal spacecraft

control algorithm from the MATLABTM development environment into an FPGA-based

embedded-platform development board. Research at the Naval Postgraduate School has

produced a revolutionary time-optimal spacecraft control algorithm based upon the

Legendre Pseudospectral method. Currently, the control algorithm is dependent on the

MATLABTM environment, a fourth generation language (4GL). 4GLs are powerful high-

level abstraction and development tools, but are not efficiently instantiated into an

embedded system. This study establishes three distinct development phases to migrate

the algorithm from 4GL dependency to embedded operation. The first phase removes the

algorithm’s dependency on the 4GL environment by translating the algorithm into the C

programming language. The second development phase compiles and embeds the

algorithm into an FPGA-based development board. The final development phase

introduces a custom computing machine (CCM) instantiated in an FPGA to reduce the

control calculation time, thereby broadening the algorithm’s potential application.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1
B. CURRENT ALGORITHM STATE...2

II. MIGRATION PATH...5
A. MIGRATION OVERVIEW ...5

1. Phase 1: MATLABTM Extraction ...5
a. Why Extract?...5
b. MATLABTM Extraction...6

2. Phase 2: Embedded Platform Development7
a. Phase One Dependency ..7
b. Phase Two Hardware..8

3. Phase 3: Hardware Acceleration ..9

III. PHASE ONE – EXTRACTION ...11
A. EXTRACTION OPTIONS ...11

1. Convert to SIMULINK..11
2. Rewrite ..12
3. Translate and Compile ..13
4. Path Selection Influence: Embedded Programming Language.....13
5. Path Selection ...14

B. MATLABTM COMPILER...14
1. Single-step or Modules? ..14
2. Compiling Modules..17

IV. PHASE TWO – HARDWARE MIGRATION..23
A. PHASE TWO OBJECTIVES ...23

1. Embedding the Algorithm...23
2. Verifying the Algorithm ..23
3. Performance Measurement...24

B. COMPONENT REQUIREMENTS ...25
1. Host System ..26

a. Locating...26
b. Loading..27
c. Remote Debugger..27

2. Target ..27
a. The Processor..28
b. Operating System ..30
c. Memory..31
d. Input-Output ...33
e. Board Indicator ...33
f. Development/Design Tools ...34

C. CANDIDATE DEVELOPMENT BOARDS ...34

 viii

V. PHASE THREE – CUSTOM COMPUTING MACHINE (CCM)35
A. HARDWARE ACCELERATION..35
B. MODULE IMPLEMENTATION ..36

1. Ultimate Goal ...36
2. Proposed Goal ..37
3. Targeted Function..37
4. FPGA Function Implementation..39

a. Modular Implementation – Commercial................................39
b. Modular Implementation – Public ...52
c. Custom Inner-product Processor ...54

VI. FUTURE WORK ROADMAP ...55
A. PHASE ONE: SOFTWARE ...55

1. Stand-alone Algorithm ..56
a. Scope of Work ...56
b. Development Hardware and Software59
c. Task Assignment ...59

2. Evaluate Single-Point Precision Performance.................................60
a. Scope of Work ...60
b. Development Hardware and Software60
c. Task Assignment ...61

B. PHASE TWO: HARDWARE...61
1. Establishing the Embedded Development Board61

a. Scope of Work ...61
b. Development Hardware ..62
c. Hardcore CPU and FPU Board ...62
d. FPGA-based Development Board ..64
e. Recommendation...65
f. Task Assignment ...66

2. Cross-compile Program...67
a. Scope of Work ...67
b. Development Hardware and Software67
c. Task Assignment ...68

C. PHASE THREE: ACCELERATOR..68
1. Design and Test IPP...69

a. Scope of Work ...69
b. Development Hardware and Software70
c. Task Assignment ...71

2. Modify Microcontroller/IPP Compiler ..71
a. Scope of Work ...72
b. Development Hardware and Software72
c. Task Assignment ...72

3. Integrate IPP ..73
a. Scope of Work ...73
b. Development Hardware and Software74
c. Task Assignment ...74

 ix

D. FURTHER RESEARCH...75
1. State Update Rate - Sensor Saturation ..75
2. C to VHDL Compilers/Function Generators76

APPENDIX A: PHASE ONE MATERIALS ..77

APPENDIX B: PHASE TWO MATERIALS ...79

APPENDIX C: PHASE THREE MATERIALS ...81

APPENDIX D: LOBATTO.M (MATLABTM)...83

APPENDIX E: LOBATTO.C (TRANSLATED) ..87

LIST OF REFERENCES..91

INITIAL DISTRIBUTION LIST ...95

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Real-time Optimal Control Algorithm...4
Figure 2. Phase 1 Algorithm Development ...7
Figure 3. Virtex-4 ML403 Embedded Platform Development Board...............................8
Figure 4. Phase 3 Block Diagram..10
Figure 5. Control Algorithm Structure ..17
Figure 6. Software Development Flowchart ...26
Figure 7. Ultimate Control Algorithm Goal..37
Figure 8. Inner-Product Call Sequence ...38
Figure 9. Control Algorithm with Inner-product Multiplier ...39
Figure 10. Conceptual FPGA Implementation..40
Figure 11. Modular Inner-Product Processor (IPP)...41
Figure 12. Pipeline Clear Process..43
Figure 13. Segmentation Process ..45
Figure 14. Migration Task Breakdown ...55
Figure 15. AMCC PowerPC 440EP Evaluation Board...63
Figure 16. Xilinx Virtex-4 ML403 Development Board ..64

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. MATLABTM Compiler Command and Options ..19
Table 2. FPU Microcontrollers ..30
Table 3. Control Algorithm Code Estimate ...33
Table 4. Nominal SNOPT Solution Vector Calculations ..47
Table 5. Pentium® IV Inner-product Calculation Time (50,000 elements)48
Table 6. IP Core Clock Cycles and Frequencies..49
Table 7. Estimated Inner-Product Processor Performance ..51

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

Quatye, Jessica, and Wyatt, I appreciate the many sacrifices that you have made

in support of my service to our country. Few fully understand the sacrifices you have

made. I am blessed to have the three of you in my life.

To Dr.’s Mike Ross, Herschel Loomis, Alan Ross, and Walter Murray, thank you

for allowing me to meander among giants.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE
The purpose of this thesis is to provide an overarching plan to migrate a time-

optimal, spacecraft attitude-control algorithm from the MATLABTM development

environment into an embedded development board. The pace of advances within the

electrical and electronic industry is rapid. We recognize this fact and understand that in

the course of this research, writing, and distribution, factors that influenced critical

decisions in formulating the plan’s path selection may change. To mitigate this effect, we

will identify significant factors influencing the recommended development path. The

identification and discussion of key influence factors will allow personnel implementing

this plan the opportunity to alter the plan as technological advances make previously

unattractive or unachievable development paths obtainable. The primary goal of this

document is to develop a clear, concise, and methodical working-level plan, not an

esoteric discourse.

At the onset of this research, the assignment was to investigate the plausibility of

migrating an existing algorithm from MATLABTM to an embedded system. After

preliminary research, the migration task appeared feasible. The scope of research was

then expanded to investigate potential migration paths, identify the most promising path

in terms of cost and implementation time, and record key decision factors for these

recommendations.

This document is not intended to be a standalone migration plan; it is not all-

inclusive. The intention is to use this document as a starting point and serve as an

overarching plan to guide the overall migration of the algorithm from desktop PC to

embedded-development-system operation. This document will segment the migration

process into distinct development efforts. This method of work breakdown facilitates

distributing segments of the plan among multiple students or industry partners for

implementation. Using the research information provided by this document, tasked

individuals or organizations will formulate a more detailed plan for each respective work

element.

2

B. CURRENT ALGORITHM STATE
Several variants of the time-optimal spacecraft attitude-control algorithm exist at

the Naval Postgraduate School. The particular variant utilized in this work was originally

developed by Andrew Fleming1 and modified by Pooya Sekhavat2. The modifications

removed fixed time-step calculations and improved problem scaling, reducing the time

required to generate a solution. Henceforth, the variant of the time-optimal spacecraft

slew maneuver control algorithm utilized in this document will be referred to as the

control algorithm.

The control algorithm is based upon satisfying Pontryagin’s Maximum Principle3.

The algorithm achieves the time-optimal maneuver solution by maintaining a set of

Maximum Principle conditions. The Legendre pseudospectral method4 is employed to

derive solutions that meet, and maintain, the Maximum Principle requirements

throughout the solution space. The purpose of this thesis is to derive an achievable plan

to migrate the algorithm from MATLABTM into embedded hardware. This thesis does

not delve deeply into the algorithm’s behavior, unless that behavior significantly

influences the migration process.

The control algorithm currently operates within MATLABTM, a proprietary fourth

generation language (4GL) developed by The MathWorks, Inc. The control algorithm

implementation is comprised of numerous programming script files, M-files, and

functions. It is important to note that the implementation does not utilize SIMULINKTM.

SIMULINKTM is a MathWorks block-library modeling tool that is integrated with

MATLABTM. The significance of this statement will be discussed further in the software

section of this document. Function calls provide MATLABTM’s interpreter the cueing

required to link the script files and create an executable program.

1 Fleming, A. (2004). Real-Time Optimal Slew Maneuver Design and Control. Monterey, CA: Naval

Postgraduate School.
2 Sekhavat, P., Fleming A. and Ross, I. M. (2005, July). Time-Optimal Nonlinear Feedback Control

for NPSAT1 Sapcecraft. Proceedings of the 2005 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, Monterey, CA..

3 Kopp, R.E. (1962). George Leitman (Ed.) “Pontryagin Maximum Principle,” in Optimization
Techniques. New York: Academic Press, Inc.

4 Ross I. M. and Fahroo, F. (2003). “Legendre Pseudospectral Approximations of Optimal Control
Problems,” Lecture Notes in Control and Information Sciences (Vol. 295). New York: Springer-Verlag.

3

The control algorithm contains three proprietary elements: Sparse Non-linear

OPTimizer (SNOPT), TOMLAB Optimization wrappers, and DIDO. SNOPT is a

subservient algorithm, developed at Stanford University, which performs large-scale

constrained optimization using sequential quadratic programming (SQP) methods5.

TOMLAB Optimization, a Swedish company, developed a software adapter, wrapper,

facilitating the use of SNOPT within MATLABTM. DIDO, not an acronym, is a

MATLABTM package capable of solving dynamic optimization problems6. DIDO was

conceived and written by professors at the Naval Postgraduate School in Monterey,

California. In its current configuration, DIDO is dependent upon the TOMLAB wrapper

to access SNOPT in order to solve optimization problems.

The following provides a simplified description of the control algorithm’s

operation. All user interaction with the control algorithm occurs within MATLABTM’s

Development Environment, a Graphical User Interface (GUI). The user specifies the

initial and final spacecraft attitude and rotation rate in the main script file using

programming constants. Programming constants used in this manner is commonly

referred to as “hard wiring” and is useful for developing programs that will eventually

receive a range of input values. The main script file includes programming constants that

define the spacecraft’s physical characteristics, such as moment of inertia and

maneuvering capability. The main script file is synonymous with the spacecraft model.

Once initial and final states are defined, the user runs the main script file within the

MATLABTM development environment. The main script file calls the DIDO function

that, in turn, calls the SNOPT function. SNOPT operates in a recursive manner,

executing major and minor iterations. DIDO collects SNOPT’s iterative solutions and

derives the overall optimal control solution. DIDO passes the control solutions back into

the MATLABTM environment as objects within a predefined programming structure.

Each process level described above interacts with the PC’s central processing unit (CPU)

through the operating system, an important point when attempting to increase the

5 Gill, Philip E., Murray, Walter, and Saunders, Michael A. (2005). SNOPT: An SQP Algorithm for

Large-Scale Constrained Optimization. Society for Industrial and Applied Mathematics Review (Vol. 47,
No.1, pp. 99-131). Philadelphia: SIAM.

6 Ross, I.M., and Fahroo, F. (2002). User’s Manual for DIDO 2003: A MATLABTMTM Application
Package for Dynamic Optimization. Monterey, CA: Naval Postgraduate School.

4

performance of the control algorithm. Figure 1 provides a representation of the

hierarchical relationship between the spacecraft model, DIDO, SNOPT, and the operating

system. The TOMLAB wrapper is viewed as an access portal to SNOPT. The wrapper

does not perform any significant calculations.

Figure 1. Real-time Optimal Control Algorithm

5

II. MIGRATION PATH

A. MIGRATION OVERVIEW
The migration overview outlines the control algorithm’s transition from a

MATLABTM executable to an embedded application. The transition is performed using

incremental development efforts. Dividing the migration plan into smaller development

efforts is beneficial for two significant reasons. The work may be distributed among

several students or contractors. This work may be performed concurrently, as a

development team, or sequentially over time. The second benefit of dividing the

development effort is that the algorithm can be tested, and validated, within each work

element. If the migration effort were accomplished in a single effort, locating error

sources would potentially require investigating the entire migration process. Conversely,

if the migration process is broken into smaller work elements, developers can scrutinize

the changes made within the bounds of the work element, assuming testing and validation

was performed within each work element.

1. Phase 1: MATLABTM Extraction

a. Why Extract?
Deploying a satellite attitude-control algorithm operating within

MATLABTM is not practical. Dependency on another application adds a layer of

unnecessary hardware resources on the satellite. The unnecessary hardware resources

burden the satellite with unnecessary mass, volume, and power requirements. Additional

hardware resources increase the cost of the launch system and satellite. Furthermore,

MATLABTM script programs are interpreted during execution not compiled. Interpreted

programs tend to run slower than their compiled counterparts, due to the run-time

interpretation. Therefore, MATLABTM programs are slower than their compiled

counterparts.

6

b. MATLABTM Extraction
The first development effort extracts the control algorithm from

MATLABTM. The goal of control algorithm extraction is to operate as a stand-alone

executable program within Microsoft® Windows XP. The MATLABTM Compiler will be

used to translate the control algorithm modules into the C programming language. A

programming-development environment will be used to compile and link the control-

algorithm modules and math libraries into a Microsoft® Windows XP executable

program. The extraction removes the control algorithm’s dependency on the

MATLABTM development environment and frees the algorithm from the associated

resource overhead.

Modular testing will verify control signal generation and measure solution

generation time. The MATLABTM-generated control solutions are used as the baseline

throughout the migration process. The MATLABTM based control algorithm has been

verified. The developer will validate the stand-alone program by comparing its results

with the MATLABTM solution. Discrepancies will be investigated and corrected. The

stand-alone program is expected to generate control solutions faster due to shedding

MATLABTM’s resource overhead. However, there is possibility that the stand-alone

control algorithm will perform slower. MATLABTM contains an accelerator, JIT. The

accelerator’s enhancements may not translate or reside within the extraction libraries.

The developer will execute a series of spacecraft maneuvers using both the MATLABTM

and stand-alone algorithm variants. The solution generation times will be recorded,

compared, and analyzed during each phase of development.

The operator will interact with the stand-alone control algorithm using a

disk operating system (DOS) window. Within the DOS window, the user will be

prompted to enter the initial and final satellite orientation and rotation rates. Once

entered, the executable control algorithm calculates the time-optimal control signals and

writes the results to an ASCII file. The algorithm will also display the time required to

generate the control solution in the DOS window. Figure 2 summarizes the algorithm’s

structure at the completion of phase one.

7

Figure 2. Phase 1 Algorithm Development

While developing an intricate graphical user interface (GUI) is tempting, it

is not required. A GUI will not be required during embedded operations and would only

serve to increase the hardware resources required to host the control algorithm. While a

text based GUI is not impressive, the text-based interface within a DOS window is

sufficient for testing and validating the extracted algorithm. It would be wise to apply

personnel efforts and resources in other areas, areas that would provide a more direct

benefit.

2. Phase 2: Embedded Platform Development
Phase two migrates the algorithm onto an embedded platform-development board,

not directly to flight hardware. The control algorithm requires validation and verification

in a stand-alone hardware configuration prior to expending resources for the transition to

flight hardware. Anticipated challenges during this portion of the migration are similar,

if not identical, to the challenges to be encountered during the transitioning to flight

hardware. Resolving migration problems on an embedded development board that

interfaces directly with a personal computer is more expedient and less expensive when

compared to performing the same migration and troubleshooting on flight hardware.

a. Phase One Dependency

Phase two development utilizes source-code translated in phase one.

Traditionally, source-code must be compiled for a specific target operating system and

8

processor. With some of the new programming languages, such as Java, this is not

always true. However, this project is using programming languages and tools that

compile to specific operating system and processor. In phase one, the source-code is

compiled to operate on the host computer running Microsoft® Windows XP and an x86

CPU. In phase two, the source-code is compiled for operation on an embedded platform

development board running a real-time operating system and a microcontroller.

b. Phase Two Hardware
Embedded platform development boards are small computer boards

containing many of the following components: clock, processor, memory, input-output

(I/O) ports, and field programmable gates array (FPGA). Embedded platform

development boards are available through several manufactures. Figure 3 provides an

example of an embedded platform development board, the Virtex-4 ML403 Embedded

Platform. The ML403 is a very capable development board offered by Xilinx, Inc., a

company headquartered in San Jose, California.

Figure 3. Virtex-4 ML403 Embedded Platform Development Board7

7 Courtesy of Xilinx, Inc.

9

The phase two development board will operate as a microcomputer,

hosting a Real-Time Operating System (RTOS). The control algorithm source-code

developed in phase one will be compiled to operate with the development board’s RTOS

and processor configuration. The user will interact with the development board using a

desktop PC. The PC communicates with the development board via an I/O cable,

preferably a USB interface. The user will enter initial and final satellite state

information. Once this information is forwarded to the development board, the control

algorithm will generate the control signals and store the information in a predefined

memory location.

The embedded development board will generate a control solution for the

commanded maneuver and store the commands in the board’s memory. The computed

control commands will be extracted from the board using the I/O interface. The control

commands will be recorded and compared with the solutions provided by the

MATLABTM algorithm. The time required for the development board to perform the

calculations will be recorded and compared to the other variants. The control signal

generation time will be used to determine potential aerospace applications.

3. Phase 3: Hardware Acceleration
After the control algorithm is successfully hosted within the development board,

methods to reduce the computation time will be implemented in hardware. The control

algorithm performs repetitive, large-vector inner-product calculations during each

control-signal generation. Within a PC, these calculations are performed using the CPU’s

floating-point unit (FPU). These calculations can be performed faster using custom

processing logic. Custom computing logic is commonly referred to as a custom

computing machine (CCM). When used in conjunction with a generic processor, the

CCM is also known as an auxiliary processing unit (APU).

Cost-effective implementation of a CCM requires an FPGA and algorithm-

source-code modification. The CCM performs large-vector inner-product calculations

rapidly. The design is instantiated within an FPGA residing on the development board.

A data transfer bus connects the CPU and CCM. The algorithm’s source-code requires

10

modification to utilize the CCM, vice an FPU, each time an inner-product calculation is

required. The double-precision floating-point inner-product result is returned to the CPU

via a data return bus. Figure 4 provides a block diagram of the phase three system.

Generic CPU CCM

Real Time OS

Spacecraft Model

DIDO

SNOPT Vector / Vector
Multiplier

I/O Bus

Generic CPU CCM

Real Time OS

Spacecraft Model

DIDODIDO

SNOPT Vector / Vector
Multiplier

Vector / Vector
Multiplier

I/O Bus

Figure 4. Phase 3 Block Diagram

Phase three operation is identical to phase two operations. The hardware

acceleration does not affect the manner in which the operator interacts with the embedded

development board. The embedded development board will generate a control solution

for the commanded maneuver and store the commands in the board’s memory. The

computed control commands will be extracted from the board using the I/O cable. The

control commands will be recorded and compared with the solutions provided by the

MATLABTM algorithm. The time required for the development board to perform the

calculations will be recorded and compared to the other variants. Successful hardware

acceleration will be apparent by experiencing a reduction in required calculation time.

The control signal generation time will be used to determine potential aerospace

applications.

11

III. PHASE ONE – EXTRACTION

A. EXTRACTION OPTIONS
MATLABTM Release 13 (version 6.5) and higher are fourth generation languages

(4GLs). The popularity of 4GLs is based on the ability to provide the user with high-

level abstraction capabilities. MATLABTM provides a very powerful abstraction

capability; however, this abstraction capability is not provided without penalty.

Programs written for the MATLABTM development environment are dependent upon

MATLABTM’s interpreter to execute. Because of this dependency, MATLABTM

programs are not directly executable within the PC’s operating system. There are three

primary options for severing the control algorithm’s dependency on MATLABTM and

converting it into a stand-alone program: migrate to SIMULINK, rewrite, or translate.

1. Convert to SIMULINK
Conversion of the MATLABTM script code into a SIMULINKTM model is one

potential conversion path. MATLABTM and SIMULINKTM are highly integrated

software products offered by MathWorks. SIMULINKTM is a model and simulation

software package. MathWorks offers a SIMULINKTM companion module, Real-Time

Workshop, which translates a model into stand-alone C code. Furthermore, MathWorks

sells additional SIMULINKTM companion products that provide rapid migration paths

from modeling to select hardware devices.

While MATLABTM and SIMULINKTM are closely integrated, migration of the

control algorithm into SIMULINKTM may introduce two insurmountable problems. As

discussed in section one, the control algorithm is dependent upon a module called

SNOPT. This module is accessed using a third-party software wrapper. The wrapper

was written to support MATLABTM, not SIMULINKTM. If SNOPT does not operate

properly after the control algorithm is migrated into SIMULINKTM, it will be difficult to

identify whether a problem resides in the wrapper or within SNOPT. Furthermore, the

wrapper is proprietary. Isolating and correcting a problem will require negotiating a

business agreement with TOMLAB. Secondly, at this time, several SIMULINKTM

12

library blocks will not compile into ASNI C code. The control algorithm is constructed

using a layering of MATLABTM functions. While the SIMULINKTM library contains a

user-defined MATLABTM function block, the function block (fcn) is one of several

library blocks that do not compile to production code8. The user can create custom

SIMULINKTM blocks by writing S-Function9 or Embedded MATLABTM functions10. An

S-Function is script code that defines the behavior of the SIMULINKTM block, and can

be written in C, C++, Ada, or FORTRAN programming languages. It is conceivable that

the control algorithm could be disassembled into basic function blocks, converted into S-

Functions or Embedded MATLABTM Functions, reassembled, debugged, and verified in

SIMULINKTM. After studying the control algorithm source-code, the time and effort

required to perform this task is forecasted to rival the rewrite migration effort.

2. Rewrite
Rewriting the entire algorithm in a computer language that compiles to the desired

embedded hardware is another migration option. A validated and verified control

algorithm exists within MATLABTM. Figure 6 displays the modular structure of the

MATLABTM -hosted control algorithm. The existing structure parallels the structure

developers would use to implement the control algorithm in a programming language.

This existence and similarity of the MATLABTM variant provides a useful tool to verify

proper operation of each programmed function. Results from the corresponding

MATLABTM function can be used to verify the results provided by the written code.

Re-writing the control algorithm in a programming language requires a significant

investment of time by proficient programmers. The programmers require training in

advanced mathematical concepts, such as Pseudospectral methods11, central to the

8 A complete list of SIMULINKTM blocks suitable for production code generation can be retrieved
from <www.mathworks.com/access/helpdesk/help/toolbox/rtw/ug/bqecl8b.html> or by typing
“showblockdatatypetable” at the command line in MATLABTM .

9The MathWorks. SIMULINKTM Product Page. Retrieved 10 Nov. 2005, from
<www.mathworks.com/access/helpdesk/help/toolbox/simulink/sfg/f6-151.html>

10The MathWorks. MATLABTM Product Page. Retrieved 10 Nov. 2005, from
<www.mathworks.com/access/helpdesk/help/toolbox/simulink/slref/embeddedMATLABTMfunction.html
>

11 Ross I. M. and Fahroo, F. (2003). “Legendre Pseudospectral Approximations of Optimal Control
Problems.” Lecture Notes in Control and Information Sciences (Vol. 295). New York: Springer-Verlag.

13

control algorithm. The time and training requirement is the result of using MATLABTM,

a 4GL, to create and validate the control algorithm. The 4GL provides a very high level

of abstraction through complex, pre-packaged function calls. MATLABTM functions are

proprietary and native to its development environment. Equivalent functionality must be

implemented in the selected programming language in order to extract the control

algorithm from MATLABTM. In their current form, the MATLABTM functions are not

directly accessible by a stand-alone application running within a PC operating system.

Secondly, if the functions are called from the operating system using a library scheme,

propriety issues must be resolved with MathWorks prior to system deployment.

3. Translate and Compile
MATLABTM contains a compiler capable of converting M-files into four different

products: stand-alone applications, C or C++ shared libraries, Excel add-ins, or

Component Object Models (COM). Throughout this thesis, a capital “C” will

differentiate between a programming compiler and MATLABTM’s Compiler module.

The control algorithm is comprised of a main M-file that calls a series of M-file

functions. The goal of phase one is to develop a stand-alone control algorithm executable

program. The Compiler option provides two paths in which to convert the control

algorithm into a stand-alone application: translate and compile directly to a stand-alone

program or C/C++ source-code modules.

4. Path Selection Influence: Embedded Programming Language
While there are several embedded programming languages, C has become the

dominant language in embedded programming12. Several programming languages

support embedded programming: assembly, Pascal, FORTRAN, C++, Ada, and Java. C

is a dominant embedded programming language because it allows low-level control and

provides high-level abstraction. These traits are often mutually exclusive, or significantly

out of balance, in the other programming languages. Because of C’s balance and

12 Barr, Michael. (1999). Programming Embedded Systems (p. 9). Sebastopol, CA: O’Reilly &
Associates, Inc.

14

flexibility, there is a plethora of C development and compiler tools. C is one of the

programming languages that can be used within MATLABTM and SIMULINKTM using

wrappers.

C is the recommended programming language based on three factors. First, C is

the dominant embedded programming language and enjoys widespread industry support.

Most embedded hardware manufactures provide and support C compilers for their

products. Secondly, The MathWorks offers a C compiler module that integrates with

MATLABTM. The compiler translates M-file code into C or C++ object code. Lastly,

Stanford University has provided the Naval Postgraduate School with a copy of SNOPT

written in C code. This provision significantly reduces the development effort required to

migrate the control algorithm should the C programming language be utilized.

5. Path Selection
The MATLABTM Compiler option is recommended because it provides the best

opportunity to achieve near-term migration advances. The SIMULINK migration path

was not selected due to the limited library model set and potential proprietary delays.

The risk of encountering time and cost delays during the limited time of this research

versus the anticipated results made the SIMULINK option less attractive. The rewrite

option was not pursued due to the time and programming proficiency required. The time

required to pursue the rewrite option was beyond the limits of this research. Translating

the control algorithm’s M-files using MATLABTM’s established Compiler provided the

most promising migration path. The MathWorks’ Compiler literature indicated that the

control algorithm’s functions could be translated and compiled directly into a stand-alone

application or the modules translated into C/C++ code.

B. MATLABTM COMPILER

1. Single-step or Modules?
The MATLABTM Compiler option offers two methods to translate and compile

the control algorithm into a stand-alone application. The first method compiles the entire

15

algorithm into an application in a single step. This approach accomplishes the goal of

phase one; however, the single-step compile approach is not the best method to support

the following project phases. The single-step compile method compiles an application

that operates only on the specified target operating system and CPU. The application

cannot continue the migration process in phases two and three. Development effort must

backtrack and repeat the translation process from within the MATLABTM environment in

order to proceed into phases two and three. The algorithm would be translated into C

code, which, in turn, would then be linked and compiled for the target hardware platform.

The second compiler option translates the MATLABTM control algorithm

modules, not entire application, into the C programming language. The C modules are

linked using a commercial programming application. Once linked, the code is compiled

into executable code for a host platform. Potential host platforms range from common

mainframe and desktop computers to embedded systems. Because C is a prevalent

programming language, most manufacturers provide C compilers for their hardware.

Translating and compiling modules provide three benefits: reduced redundant

effort, migration flexibility, and verification. The single-step compiled control algorithm

cannot migrate into phases two and three. The single-step compiled control algorithm is

fixed to the target operating system and processor for which it was compiled. Translators

are available in industry. However, translators are often proprietary and are written to

support a transition from a single application to a particular hardware platform, i.e.

MATLABTM to C. At the time of this report, a translator did not exist for the control

algorithm. Therefore, prior to proceeding into phase two, the MATLABTM control

algorithm modules would require translation. A programming-development environment

would be used to link and compile the translated code into an executable program capable

of being hosted on a development board. Translating and compiling the entire control

algorithm in one step requires redundant work.

Translating the individual control algorithm modules into C code provides

migration flexibility. The control algorithm modules are translated into C using the

MATLABTM Compiler. A commercial programming application is used to link and

compile the C modules. The liked code may then be compiled into an executable

16

program for a variety of host systems. In the translated state, the control algorithm may

be compiled and hosted on a desktop PC, to support phase one, or on an FPGA-based

embedded-platform development board, to support phase two and three. Borland C++

Builder, GCC, LCC-WIN32, Microsoft® Visual Studio are a few examples of common

programming environments that accept C code. These programming packages provide

their own integrated development environment, which compiles and links object code

into executable programs for a variety of operating system and processor combinations.

Additionally, some programming environments, like GCC, allow the user to add

hardware manufacturer compilers. This addition allows the user the ability to cross-

compile executable programs for the embedded hardware.

Translating the individual control algorithm modules provides a verification and

comparison tool for phases two and three. The linking and compiling individual modules

maintains a common control algorithm structure through each phase of development. If

the phase one algorithm is translated and compiled directly into a stand-alone application,

algorithm structure similarity cannot be guaranteed. The Compiler’s manipulation of the

control algorithm is unknown. Therefore, execution time comparisons between the

development phases may not be directly comparable, nor future performance

enhancements predictable. Additionally, if the generated control signals are in error, it

will be difficult to determine the source of the error. A common development approach

between phases one and two increases familiarity, maintains a common algorithm

structure, and assists measuring algorithm performance in each development phase.

Modular translation provides a means to introduce algorithm improvements in a

disciplined and verifiable manner. Modularity provides a natural means to make

improvements. As improvements to the algorithm are introduced, the affected module

can be updated, tested, and verified prior to integration into the algorithm. This modular

approach provides discreet boundaries within which the changes have been made. If the

algorithm fails verification after the introduction of a changed module, the boundary of

change is known. This knowledge localizes the error source to one or more modules,

vice the entire algorithm.

17

2. Compiling Modules
The control algorithm’s modules are translated into C code using the MATLABTM

Compiler. The Compiler is an add-on companion to MATLABTM and must be purchased

separately from MathWorks. The control algorithm consists of a conglomeration M-files

linked by function calls. The control algorithm structure is displayed in Figure 5. Note

that the “.m” file extensions are omitted for brevity. Additionally, MATLABTM function

calls are not displayed due to their number and relationship complexity.

Figure 5. Control Algorithm Structure

The algorithm execution begins by opening and executing Mag_Open_Main from within

the MATLABTM IDE. Mag_Open_Main first collects information from MinTimeCost

and ScaledMagDynamics and then calls Dido_2003f. Single-headed arrows represent

information flow in one direction; dual-headed arrows represent information flow in both

directs. Once called, Dido_2003f controls the algorithm process and now directly pulls

information from MinTimeCost and ScaledMagDynamics. Dido_2003f calls the

surrounding functions in a clockwise manner, beginning with spray and followed by

psgang. Psgang calls its own function, lobatto, which is transparent to Dido_2003f. The

18

clockwise progression continues until DidoSolve. DidoSolve is the parent calling

function to SNOPT, the Stanford University code. DidoSolve calls SNOPT repeatedly.

The bolded arrows annotate multiple execution cycles. The function call execution

continues the clockwise progression ending on lamfilt. Lamfilt is another function that is

called on several occasions, but at different times earlier in the clockwise cycle. Two-

dimensional representation of the algorithm execution makes it difficult to reproduce the

calling sequence exactly, without generating further confusion.

MATLABTM versions 7.0 and 6.5.1 utilize two different Compilers; each

produces significantly different results. The companion compiler to MATLABTM

7.0.1.24704 service pack 1 is Compiler version 4.1.1. The companion compiler to

MATLABTM 6.5.1.199709 service pack 1 is Compiler version 3.0.1. Phase one’s

migration effort translates the control algorithm’s M-files into C source-code. Compiler

4, and later, does not generate C code for the entire M-function13. Beginning with

Compiler version 4, the MATLABTM Compiler generates wrappers, interface code, which

allow the compiled M-files to be executed within the MATLABTM Runtime Component

(MCR). MCR is a set of proprietary MathWorks stand-alone runtime libraries. The

MCR libraries are not C/C++ libraries and are not suitable for embedded deployment14.

Compiler versions prior to Compiler version 4 translate the M-file into C code15, minus

library function calls. The desired migration path requires complete C code. The

research and work presented in this document utilized Compiler version 3.0.1.

Each module in Figure 5, except SNOPT, has been translated into C code. The

Compiler translates functions only. Therefore, the Mag_Open_Main module was

converted into a function prior to translation; see Appendix A. The stand-alone algorithm

will require the creation of a C main file to accept the user commands and initiate the

stand-alone algorithm by calling the Mag_Open_Main function. Note: the

Mag_Open_Main file executes the open-loop control algorithm. The closed-loop control

algorithm is the more useful version. Therefore, when phase-one algorithm migration

begins, the developers should use the Mag_Closed_Main file.

13 The MathWorks. MATLABTM Compiler Release Notes Page. Retrieved 15 Nov. 2005, from <
http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/rn/compiler4_rn_fcs3.html>

14 The MathWorks. MATLABTM Compiler Release Notes Page. Retrieved 15 Nov. 2005, from <
http://www.mathworks.com/support/solutions/data/1-H3RQL.html?solution=1-H3RQL>

19

The Compiler translation is performed by executing the mcc command from

within the MATLABTM development environment. The Compiler’s output may be

changed using option switches. Table 1 provides the Compiler command and options

used to translate the control algorithm modules into C code.

Command: mcc –t –A debugline:on –L c –d C:\filelocation\t2tau.m translated_t2tau
Options Meaning

mcc Calls the compiler
–t Directs the compiler to translate the code to the target language specified

If omitted, a C or C++ wrapper file is generated
–A debugline:on Supports run-time error messages reporting source file name & line number

–L The character following the switch specifies target language
c Specifies C as the target language translation

cpp is used, vice c, when C++ translation is desired
–d All files are placed in the directory following the switch

C:\filelocation\t2tau.m Identifies the file path and file name
translated_t2tau User provided name for the translated files

Table 1. MATLABTM Compiler Command and Options

The switch options identified in table one are a subset of the available Compiler options.

An exhaustive listing can be reviewed by entering “help mcc” on the interpreter

command line in the MATLABTM development environment if the Compiler is installed.

The Compiler options are also accessible through The MathWorks website15.

The Compiler produces two or more files for each translated M-file. The

translated files are placed in the same location as the source file, specified in the

command line. The Compiler generates a translated *.c file and one or more *.h header

files. The wild card”*” represents the compiled source file name. The header files are

invaluable when compiling and linking the individual modules within a programming

environment. This can be a tedious process without header files. A single translated file

may generate more than one header file due to MATLABTM function calls, not displayed

15The MathWorks. MATLABTM Compiler Online Guide. Retrieved 15 Nov. 2005, from <http//:
www.mathworks.com/access/helpdesk_r13/help/toolbox/compiler/compiler.html >

20

in Figure 5. The original, modified, and translated control algorithm files are maintained

in CD-ROM media format and referenced as Appendix A. The files are available to

persons involved with the migration project.

While translators are a powerful tool, translators can accept relatively simple

source-code and produce nearly unreadable translated code. MATLABTM’s translator is a

prime example. Appendix D displays the lobatto.m source file and Appendix E provides

the translated C code. The files are provided as appendices due to their length. The

Compiler’s translator generates very lengthy and confusing variable names. Debugging

translated code will be a challenge. One approach to simplifying the translated code is

variable renaming. Most programming-development environments contain powerful

editors. Most editors contain a search and replace function. Confusing or lengthy

variable names can be changed using the editors search and replace function. If the

programming editor does not have the search and replace function, the source-code can

be copied and pasted into a modern word processor, such as Word Perfect. The word

processor’s search and replace function can be used to rename the variables. Once

complete, the code can be copied and pasted back into the original code file and saved.

Microsoft® Word is not a good editing environment for programming. Word has a

tendency of adding hidden characters and formatting which cause untraceable compiler

errors, even if the “save as type” is Rich Text Format or Plain Text. Some text editors,

such as Microsoft®’s TextPad, are not powerful enough to handle large text files.

TextPad is a low cost but powerful editor that can be easily configured to incorporate

many different compilers. It can be downloaded from the internet and evaluated, free. A

copy is included in Appendix A, along with the configuration instruction. Lastly, it is

recommended that the programmer does not select search and replace all; rather, the

programmer should step through and review each replacement prior to accepting the

change. This prudent method will prevent the inadvertent partial renaming of long

strings that contain the name being replaced.

The following are two practical comments concerning the Compiler options. The

file name, and possibly location, will change for each module. Secondly, do not add an

“o” or “c” extension to the translated filename. The Compiler automatically adds the

extension. For example, do not use “translated_t2tau.c” as the target filename. The

21

Compiler will translate the source M-file into C code and name the file

“translated_t2tau.c.c”. The double “.c” extension may cause problems when using a

programming-development environment later in the migration process. The Lcc

programming-development environment had difficulty properly recognizing files

containing double extensions.

Phase one migration work was terminated at his point in order to explore phase

two and three migration options. Discussion concerning further work required to

complete phase one is located in Section VI.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

IV. PHASE TWO – HARDWARE MIGRATION

A. PHASE TWO OBJECTIVES
Phase two is comprised of three major objectives: embedding, verifying, and

analyzing the control algorithm.

1. Embedding the Algorithm
The algorithm will be migrated into an embedded development board. Direct

migration to flight hardware requires a program sponsor to provide flight hardware. Due

to monetary limitations, sponsors cannot afford the cost of providing flight hardware

every research and development program. Furthermore, sponsors are hesitant to assume

the risk of integrating an immature algorithm into their project. The term “mature”

algorithm refers to an algorithm that has been hosted on an embedded development

board, verified, and performance metrics analyzed. Based on this definition, the control

algorithm presented in this thesis is classified as immature. The process and problems

experienced transitioning the algorithm to a development board is similar to the process

and problems that will be encountered during the migration to flight hardware.

Therefore, the lessons learned during the migration to a development board will be

invaluable experience for the eventual migration to flight hardware.

2. Verifying the Algorithm
Control algorithm verification compares the embedded control algorithm’s

solution to the baseline algorithm, the MATLABTM control algorithm. A suite of

standard test scenarios will be executed on each of the algorithm variants: MATLABTM,

stand-alone, and embedded. Each control algorithm will execute the same spacecraft

control maneuver. The three control signal results will be recorded, compared, and

analyzed. One important factor when analyzing control signal solutions is precision.

Control signal precision should be tempered relative to the host spacecraft’s torque

device. Control solution precision to sixteen decimal digits is not required if the

spacecraft’s torque devices are only sensitive to three significant digits.

24

3. Performance Measurement
The initial migration onto an embedded development board may result in a

performance reduction. In comparison to personal computers (PC), most embedded

programs and algorithms operate using slower processors with less memory resources.

The faster embedded microcontrollers operate in the 200 to 500 MHz16 frequency range.

New desktop and laptop computers operate in the 1.5 GHz to 3.8 GHz frequency range.

Embedded development boards host approximately 32-Megabyte of RAM and 16-

Megabyte of ROM. Their desktop and laptop computer counterparts are capable of

hosting RAM memory sizes in excess of 1 Gigabyte and hard drives in the two hundred

Gigabyte range. The disparity between the embedded and personal computer system’s

clock frequency and resource capacity provide the personal computers with a significant

performance edge.

Personal computers are generic computing devices and therefore must be capable

of handling a variety of programs, applications, and algorithms. To provide this broad

capability, Personal computers maintain robust software and hardware features. The

conglomeration of the additional hardware and resident software processes hosted within

a personal computer to handle the variety of tasks is often referred to as overhead.

Overhead contributes directly to the system’s power consumption, memory capacity, and

computational requirement. While the PC features support broad capabilities,

streamlined performance suffers. The control algorithm currently operates within

MATLABTM running on Microsoft® Windows XP, service pack 2. A Dell Dimension

4400 computer is the host platform for the research reported in this document: Pentium®

IV 1.8GHz, 512 MB RAM, 400 MHz FSB, NVIDA GeForce2 MX/MX400 64 MB video

card, and Maxtor® 6E040L0 hard drive. In contrast, a potential embedded development

board hosts a 200 MHz processor and 64 MB of RAM17.

The control algorithm’s migration to embedded hardware introduces processing,

memory, and power limitations could slow the calculation rate and may adversely affect

precision. An embedded computer is normally constrained by strict power, size, and

16 Xilinx MicroBlazeTM in a Virtex 2 Pro FPGA and an AMCC 440EP PowerPC.
17 Axiom Manufacturing. CML-5485 Development Board with BDM. Retrieved 21 Nov. 2005, from

< http://www.axman.com/cgi-bin/products.pl?ProdName=CML-5485W;.State=Show>

25

weight limitations. These three constraints form a trade space from which the final

embedded computer design emerges. Because of these constraints, the processor clock

rates, computational capability, and memory capacity is normally less than a PC.

Furthermore, many current embedded processors, like the popular ARM® series, do not

contain a hardware floating-point unit. The processor speed and memory size of the host

system to potential development board mentioned above contrasts the significant

computational difference between embedded computers and desktop PCs. However,

embedded systems normally provide computational services for a limited scope of work;

therefore, the overhead resources may be removed to improve computational

performance. Estimating the control algorithm’s embedded performance is difficult due

to these competing effects. The control signal generation time and precision will be key

metrics for comparison and analysis.

B. COMPONENT REQUIREMENTS
The following subsections provide a broad overview of the necessary

development board hardware and system support capabilities. At the time of writing, the

decision concerning whether academia or industry would perform the phase two

migration had not been determined. Therefore, the assumption is made that a student will

perform the work. While it is assumed that the student performing the work holds an

undergraduate degree in Engineering, it is understood that the student performing the

work may not hold an undergraduate degree within the field of the work being

performed. The discussion serves to identify hardware and lab capabilities required to

pursue phase two development; it is not intended to be an authoritative exposition. An

impressive reference for further study concerning embedded systems and architectures is

a book recently written by Tammy Noergaard18. A single book rarely bounds the

spectrum of topics facing an embedded system development team.

18 Noergaard, Tammy. (2005). Embedded Systems Architecture: A Comprehensive Guide for
Engineers and Programmers. Oxford: Elsevier, Inc.

26

1. Host System
The term “host” is used to identify the general-purpose computer used for code

development while “target” refers to the embedded development board. The host system

is a personal computer that performs the following functions: developing source-code,

compiling, linking, locating, downloading, and running the remote debugger. The

progression from source-code to executable program for both PC and embedded system

is displayed in Figure 6.

Figure 6. Software Development Flowchart

Most modern personal computers meet the system requirements for the programming-

development environment, board support package utilities, and are capable of performing

the host system duties. Phase one discussed writing source-code, compiling, and linking.

The compiler and linker in phase two operate in the same manner as their phase one

counterpart; however, the phase two compiler and linkers are specific to the embedded

development board hardware. Since the compiler and linker behavior are the same, they

will not be discussed further. Locating, downloading, and running the remote debugger

are specific to embedded development and will be discussed briefly.

a. Locating
Locating converts compiled and linked code into an executable binary

image. The locating process is performed by an application running on the host

computer. Once located, the code is considered a “relocateable program.” The binary

27

image may be downloaded into the target’s memory and executed. Locating is often

labor intensive and requires a working knowledge of the development board’s memory

configuration and operation. Most locator tools are not part of the programming-

development environment. The locator is often offered as a software program, which is

part of a manufacturer’s board support package (BSP).

b. Loading
Loading transfers the executable binary file into the target board’s

memory. The transfer occurs over a communications link between the host and target. A

common communication link between the host and target is a serial link. However,

modern development boards are equipped with USB and Ethernet ports. These advanced

ports may be available for application development if the development board is running a

stand-alone operating system. The USB and Ethernet links will significantly reduce the

loading time and expedite remote debugging efforts.

c. Remote Debugger
A remote debugger allows the developer to interact with the target

hardware to study, locate, and correct errors in the code. The remote debugger is

comprised of two parts. The first part is a graphical user interface (GUI) which runs on

the host computer. The second part is the key element and runs on the target. This

component provides the hardware control and reporting capability to the GUI. The

remote debugger software is often purchased from the development board manufacturer,

as part of the board support package bundle.

2. Target

The target is the embedded system, the development board. Many development

boards are available for purchase on the commercial market. A basic embedded system

and development board consists of, at a minimum, a processor, memory, input-output

ports, and a clock. This section addresses necessary board components, capabilities, and

28

features required to host the control algorithm. The requirement for a system clock is

commonly understood and will not be discussed.

a. The Processor
The processor interprets instructions, executes instructions, and passes

data. It is a core component of all computational devices and has become a common

term within today’s society. Therefore, this thesis will not dwell on the specific

capabilities; only identify important differences between a generic and an embedded

processor. The term generic processor and central processing unit (CPU) are often used

as synonyms. The term CPU frequently refers to generic microprocessors such as the

Intel® Pentium® or AMDTM AthlonTM series used in personal computers. Embedded

processors are commonly referred to as microcontrollers. Microcontroller designs are

intended to be inexpensive yet possess greater self-sufficiency than their general-purpose

counterpart. The self-sufficiency is introduced through hosting input-output (I/O) and

memory features on the microcontroller die. Cost savings and self-sufficiency comes

with a price. Microcontrollers generally cannot execute instructions or perform

computations as quickly as their general-purpose counterparts perform.

Unlike the modern CPUs mentioned above, microcontrollers do not

necessarily contain a floating-point unit (FPU). FPUs provide processors the ability to

perform floating-point math via hardware, vice a software emulator. Hardware execution

of floating-point math is faster but requires additional hardware circuitry. Floating-point

emulation is slower and requires additional software code, which must be stored on the

embedded system.

The development board selected for phase two development should

contain a floating-point unit. A FPU will help maintain the control algorithm’s current

accuracy and speed of execution. DIDO and SNOPT are intrinsic software modules to

the control algorithm. Both of these software modules are dependent upon floating-point

calculations19. Additionally, variables created in the MATLABTM script files, not

declared as integer or single precision, are stored as double precision floating-point

19 Murray, Walter and I. M. Ross. Personal interview. 22 Apr. 05.

29

numbers, by default20. A review of the control algorithm script files show numerous,

numerically undeclared, variables meeting this condition. Performing floating-point

emulation will slow the control algorithm’s execution. Xilinx’s MicroBlazeTM v4.00

FPU boasts a performance improvement factor of 6 times for Joint Photographic Experts

Group (JEPG) operations, 50 for Fast Fourier Transforms (FFT) manipulations, and 120

for finite impulse response (FIR) filtering over software floating-point operations21. One

goal of embedding the control algorithm is to improve the control algorithm’s execution

time, thus broadening the potential application. Utilizing an onboard hardware FPU will

improve the control algorithm’s embedded performance.

The development board should contain a double-precision floating-point

unit to remain consistent with the existing control algorithm results and analysis. The

previous paragraph details the control algorithm’s dependency on double-precision

floating-point math. Changing the development board to single-precision floating-point

operations without analyzing the affects has the potential to allow coding or hardware

error to propagate. Future research should analyze the effects of single-precision

floating-point math operations on the control algorithm’s accuracy and execution time.

In the interim, microcontrollers containing double-precision FPUs are available. Table 2

provides an abbreviated list of FPU the more popular microcontrollers. The core column

identifies whether the microcontroller is an ASIC chip, hard-core, or instantiated within a

Field Programmable Gate Array (FPGA), soft core. Absent from the table is mention of

ARM® processors. ARM® processing cores do not contain hardware FPU22,23. If future

analysis indicates single precision calculations are sufficient, the microcontroller’s FPU

can be shifted into a single precision mode and the results analyzed.

20 The MathWorks. MATLABTM Online Programming Documentation. Retrieved 17 Nov. 2005,

<http//: http://www.mathworks.com/access/helpdesk/help/techdoc/MATLABTM_prog/ch11_st3.html>
21 Xilinx, Inc. MicroBlazeTM Floating-Point Unit. Retrieved 17 Nov. 2005, from <

http://www.xilinx.com/ipcenter/processor_central/microblaze/microblaze_fpu.htm#features>
22ARM®. ARM® Technical Support FAQ. Retrieved 18 Nov. 2005, from

<http://www.arm.com/support/vfp_support_code.html>
23ARM®. ARM® VFP10 Coprocessor. Retrieved 18 Nov. 2005, from

<http://www.arm.com/products/CPUs/VFP10.html>

30

Processor Core FPU Precision Company
Microblaze soft yes single Xilinx
TC1796 (AUDO-NG) hard yes single Infineon
PowerPC 440EP hard yes both AMCC
MPC5200 hard yes double Freescale
TSC695F hard yes double ATMEL
PowerPC 405 soft capable double Xilinx

Table 2. FPU Microcontrollers

b. Operating System
Using a standalone operating system on the development board will

expedite the migration process. Embedded programs can integrate program functionality

and board operating software into one executable program. However, this integration is

normally done with a simple or very mature program. The control algorithm project

meets neither of these criteria. An onboard operating system will allow the developer to

focus on debugging and refining the algorithm. Combining an immature and untested

algorithm with the development board’s operating system will make differentiating

algorithm or operating system errors very difficult.

A standalone-embedded operating system will allow the developers to

focus on refining the algorithm. Without an operating system, the developers will need to

write and test software routines to handle basic board operations. The developers would

need to write code for operations such as input-output, interrupt handling, and

multitasking. These are only a few of the numerous functions and utilities that reside

within, are executed by an operating system, and are often transparent to the user.

Developing an “in-house” embedded operating system is not insurmountable, especially

for an experienced operating system programmer. However, this focus of this migration

effort is the control algorithm, not embedded operating systems. This project’s time and

effort would be better utilized focusing on the control algorithm and purchasing a

commercially available embedded operating system.

Several commercial-off-the-shelf (COTS) real-time operating systems

(RTOS) are available for immediate use. There is a subtle, but notable, difference

between operating systems and RTOS. As the name implies, the Real-time Operating

System supports programs that must provide results in real time, like the control

31

algorithm. RTOS are compiled for operation on a specific target microcontroller. The

recommended FPGA development board supports two soft-core microcontrollers:

MicroBlazeTM and PowerPC 405. Several RTOS support these microcontrollers24. Two

notable RTOS' among the list are Nucleus RTOSTM from Accelerated Technologies, Inc.

and MontaVistaTM’s Professional Edition 4.0 Linux RTOS. Product data sheets for both

RTOS’ are provided in Appendix B. The Nucleus RTOS supports the MicroBlazeTM and

PowerPC microcontrollers. The MontaVistaTM Linux RTOS supports almost all popular

hard microcontrollers and the soft PowerPC. The Linux RTOS does not currently

support Xilinx’s proprietary MicroBlazeTM microcontroller. Literature review and

discussions with MontaVistaTM indicate that the Linux RTOS would meet the needs of

the project. However, the cost of the Linux RTOS is high, $9,200 per retail copy25.

Reduced pricing options were not pursed at this stage of the project. The price includes

the RTOS, software diagnostics, and user utilities to assist embedded program

development. Over the course of a development project, professionally supported,

mature development utilities are often worth the added expense.

c. Memory
Development board memory is provided in three basic forms: read-only

memory (ROM), random access memory (RAM), and cache. Read-only memory (ROM)

stores the embedded system’s programs, including operating system if present. ROM is a

non-volatile memory device. Non-volatile memory retains the state information if the

system’s power is interrupted. Most embedded systems do not contain rotating memory

storage systems, such as traditional hard drives found in personal computers. Embedded

systems tend to utilize solid-state memory technology such as programmable read-only

memory (PROM), electrically programmable read-only memory (EPROM), or

electrically erasable programmable read-only memory (EEPROM).

24 Xilinx, Inc. Alliance Embedded Program Member List. Retrieved 29 Nov. 2005, <

http://www.xilinx.com/ise/embedded/epartners/listing.htm>
25 Quesenbury, Ann. MontaVista Software, Inc. Phone conversation. 16 Sep. 2005.

32

Random access memory (RAM) provides storage space for pending and

temporary calculations and information required by the operating system and

applications. RAM is a volatile memory storage device. Information stored in RAM is

lost if the system’s power is interrupted.

Level 1 cache is high-speed memory, normally located on the same silicon

die as the microprocessor. Program information is loaded into the cache from ROM upon

program initialization. Programmers accelerate the execution of programs by loading

large, frequently used segments of a program into the level 1 cache. The amount of cache

memory available to the development board is determined by the user’s microcontroller

or development board selection.

Calculating development board RAM and ROM requirements prior to the

completion of phase one is difficult. After phase one completion, stand-alone control

algorithm application, the algorithm’s ROM requirements can be estimated from the size

of the control algorithm’s executable file. This value will be an estimate since the control

algorithm’s size will not be the same for the embedded variant. The embedded system

has a different processor and operating system. This difference will require the use of

different libraries and assembly code. However, this method will provide a reasonable

estimate. The RAM requirements can be estimated using Windows XP’s Task Manager.

By selecting the Performance tab, the computer system’s memory usage may be

monitored. The algorithm’s RAM requirements can be estimated by recording the peak

memory usage during the algorithm’s execution and subtracting the memory usage

without the control algorithm running. A similar process can be performed using a

Linux-based system.

Phase two development can proceed in parallel with phase one using a

low-confidence estimation. Development programs are not always afforded the luxury of

waiting until a definitive hardware accounting is available. Table 3 provides a summary

of the estimated control algorithm size. The detailed spreadsheet supporting the

summary is provided in Appendix A. The operating system requirements were obtained

from vendor product sheets and modified by information provided during phone

33

conversations with the vendor26,27. Since this is a gross estimation, a factor of 100% will

be added to the development board’s ROM and RAM requirements. A conservative

assumption is that the entire program must be resident in RAM during operation;

therefore, potential development boards should contain a minimum of 23-Mbyte of RAM

to be considered as a host for the control algorithm.

Component Size (MBytes)
S/C Model 0.098
DIDO Files 0.539
MATLAB Libraries 4.447
SNOPT 5.16
RTOS 1.1

Control Algorithm: 11.344

Table 3. Control Algorithm Code Estimate

d. Input-Output
Input-output (I/O) ports allow the host computer and other electronic

devices to communicate with the target. Traditionally, the I/O link has been a serial

communications link. Serial communication links can lead to long delays when loading a

large program to the target. Modern development boards contain Ethernet and USB

ports. These advanced ports are accessible to the user if the development board is

running an operating system, e.g. Linux, with Ethernet and USB support.

e. Board Indicator
The presence and type of board indicator should be factored into the

development board selection. Board indicators range from light emitting diodes (LEDs)

to liquid crystal displays (LCDs). These devices are invaluable tools when attempting to

configure, operate, and debug a development board with a new operating system or

program. The indicators can be programmed to flash or display simple communication

sequences to verify basic board level operation.

26 MontaVista Software, Inc. Linux Professional. Retrieved 16 Sep. 2005, from
<http://www.mvista.com/products/pro/features.html>

27 Murecky, John. MontaVista Software, Inc. Phone conversation. 16 Sep. 2005.

34

f. Development/Design Tools
The development and design tools included with a development board

factor into the selection process. Development and design tools are a collection of

software programs and utilities used to perform tasks supporting the embedded

programming process. The term is being used in a very broad manner in this thesis.

These tools range from self-written to professionally developed tools. Open source

software provides another avenue by which these tools may be acquired. Development

board and RTOS manufactures often provide a very useful collection of development

tools to enhance their product’s functionality. Too many development tools exist to

coherently present in this thesis. Without adequate design and development tools, a

development board is of little value. The cost of a development board is relatively

inexpensive; $495 for an FPGA based board28. The price nearly doubles when the

software development tools and intellectual property (IP) cores are added29.

C. CANDIDATE DEVELOPMENT BOARDS
It is difficult to select an embedded development board without the completion of

phase one. However, critical hardware requirements have been identified and discussed.

These requirements can narrow the development board selection. First, the algorithm

requires a fully functional microcontroller. Secondly, the current control algorithm

requires floating-point math operations. In addition, the current control algorithm utilizes

double-precision floating-point operations. Therefore, until analysis proves otherwise,

the microcontroller will require access to a double-precision floating-point unit. Third,

the estimated size of the algorithm’s software is 23 Megabytes, rounded up. Lastly, the

development board must be supported by a RTOS vendor. The RTOS is required to

support real-time optimal-control calculations. The recommended development boards

are detailed in Section VI, following the custom computing machine design discussion

presented in the next section.

28 Xilinx, Inc. Xilinx Virtex-4 ML-403 Embedded Platform. Retrieved 11 Nov. 2005, from
<http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=HW-V4-ML403-
USA&sGlobalNavPick=PRODUCTS&sSecondaryNavPick=BOARDS>

29 Xilinx, Inc. Xilinx PowerPC & MicroBlazeTM Development Kit. Retrieved 30 Nov. 2005, from
<http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?sGlobalNavPick=PRODUCTS
&sSecondaryNavPick=Intellectual+Property&category=&iLanguageID=1&key=DO-ML403-EDK-ISE>

35

V. PHASE THREE – CUSTOM COMPUTING MACHINE (CCM)

A. HARDWARE ACCELERATION
Phase three development enlists an FPGA to decrease the time required for

embedded control-signal generation without degrading precision. The FPGA will host a

segment of the control algorithm, acting as an auxiliary math unit to the microcontroller

and floating-point unit. ASIC algorithm implementations are often superior to their

FPGA counterparts in the areas of power consumption, initialization, and clock rates30.

However, the cost of designing and fabricating application-specific integrated circuits

(ASIC) for rapid prototyping in a research environment is excessive31. Therefore, this

thesis recommends the use of FPGAs to design and test algorithm modules. This

approach does not concede that an FPGA variant will be the optimal platform for

deployment, only development.

FPGA algorithm implementation does not avoid error introduction due to binary

math operations. Precision degradation issues that have plagued ASIC math processors

for decades directly are applicable to FPGA-based math computations. While dated,

David Goldberg’s paper, “What Every Computer Scientist Should Know About Floating-

Point Arithmetic,” explains the challenges facing binary floating-point computations32.

More than a decade has past since the paper’s publishing and numerous algorithms and

libraries developed to mitigate error effects; yet, the basic concepts presented in his paper

remain relevant.

VHDL33 and Verilog34 are the two dominant hardware descriptive languages

(HDLs). These languages translate a hardware design into the digital format required for

30 Bartos, Frank J. (2005). Chip Wars: ASICs Versus FPGAs. Control Engineering. Retrieved 20 Nov.
2005, from < http://www.manufacturing.net/ctl/article/CA607224>

31 Bursky, Dave. (2005). We Must Hold The Line On Soaring ASIC Design Costs. Electronic Design.
Retrieved 20 Nov. 2005, from <http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=1955>.

32 Goldberg, David. (1991). What Every Computer Scientist Should Know About Floating-Point
Arithmetic. Sun Microsystems. Retrieved 30 Nov. 2005, from <http://docs.sun.com/source/806-
3568/ncg_goldberg.html>

33 Hwang, Enoch O. (2006). Digital Logic and Microprocessor Design with VHDL. Canada:
Thompson.

34 Brown, Stephen and Zvonko Vranesic. (2002) Fundamentals of Digital Logic with Verilog Design.
New York: McGraw-Hill.

36

FPGA or ASIC design implementation. Both are used for low-level hardware

development. Traditionally, VHDL and Verilog have not provided the high-level

algorithm abstraction capability enjoyed by C. VHDL shares a pedigree with Ada while

Verilog shares its pedigree with C. Despite VHDL’s association with Ada, a

programming language that is often shunned, VHDL has become a dominant language

for FPGA development. Xilinx’s Project Navigator 6.2i and ModelSim® SE 5.8a

integrated development environments (IDE) were used to test FPGA modules during this

research. The mentioned IDEs, and subsequently the Xilinx product line, were not

selected based on superior performance with respect to their competitors; rather, their

selection was simply based on cost, schedule, and availability.

B. MODULE IMPLEMENTATION
A single algorithm module is targeted for hardware implementation. One

approach would be to migrate the entire control algorithm into hardware. However,

performing the transition in one development step is challenging and cost prohibitive in

an academic environment.

1. Ultimate Goal
The ultimate migration plan maintains the spacecraft model in executable

software and incorporates the remaining portion of the algorithm into hardware. This

configuration, displayed in Figure 7, provides control algorithm flexibility. Maintaining

a software spacecraft model allows the incorporation of spacecraft design changes due to

manufacturing problems or engineering changes. Furthermore, this hardware-software

configuration provides the opportunity for the hardware to be coupled to practically any

control system model, not limited to spacecraft. While this configuration is the

program’s ultimate goal, the work breakdown is still too large and cumbersome for the

guidance and control lab’s current staffing, expertise, and facility.

37

Figure 7. Ultimate Control Algorithm Goal

2. Proposed Goal
A single function will be migrated into hardware in phase three. This approach is

based upon generating a plan that is measurable and achievable. As discussed above,

migrating a large portion of the control algorithm in one development effort is a

challenging task. Establishing and maintaining the personnel expertise and facility

capability to migrate software algorithms into FPGA-based hardware is a development

effort in itself. Given the current level of personnel experience and lab capability,

attempting to implement the complete migration in one effort may prove too daunting.

Migrating small control algorithm functions at the onset will serve to establish and

mature the migration process and build the requisite expertise. Furthermore, migrating

individual functions modularizes the development into achievable and executable tasks.

3. Targeted Function
The candidate function for initial hardware implementation is a vector inner-

product multiplier. The ideal candidate function for hardware implementation is a

repetitive, discrete math calculation. At the innermost core of the control algorithm

resides the SNOPT function35. One of the fundamental calculations buried within the

sub-functions of the SNOPT solver is vector multiplication. SQOPT is a sub-function to

35 Due to the proprietary nature of the SNOPT algorithm, a detailed discussion concerning its internal
structure is not offered. Additional SNOPT information may be obtained from Stanford University.

38

SNOPT and is dependent on large-vector inner-product calculations. Figure 8 provides a

pictorial representation of the SNOPT to inner-product call sequence. The vector lengths

range from ten thousand to fifty thousand real-numbered elements. The control

algorithm calls SNOPT repeatedly during control signal generation.

Figure 8. Inner-Product Call Sequence

In turn, SNOPT performs major and minor iterations that call the SQOPT sub-function

several times. During each call, SQOPT performs numerous inner-product calculations

prior to returning a solution to SNOPT. According to the algorithm’s author,

approximately forty inner-product calculations are performed each time SQOPT is

called36. Figure 9 displays the control algorithm’s structure after the creation of the

inner-product multiplier.

36Murray, Walter. Personal interview. 22 Apr. 2005.

39

Figure 9. Control Algorithm with Inner-product Multiplier

4. FPGA Function Implementation
There are three development paths available to implement an FPGA inner-product

core. The first two paths leverage the use of existing FPGA modules. The first method

requires a notable monetary expenditure but shortens the development and

implementation time. The second path utilizes open source FPGA modules and assumes

greater compatibility and stability risk. The last path designs a new inner-product

multiplier, avoiding the large monetary expenditure but extending the development time.

a. Modular Implementation – Commercial
The first development path involves leveraging existing commercially

developed FPGA core components, commonly called intellectual property (IP) cores.

For development purposes, the FPGA will be connected to the microcontroller via a high-

speed data bus. This configuration is analogous to the old Intel® 386 CPU to 387 math

co-processor design, circa 1987. Figure 10 is provides the conceptual layout of the

development design.

40

Double-Precision

Floating-Point Unit

(DPFPU)

High-speed
I/O Bus

Microcontroller FPGA

Custom
Computing
Machine

(CCM)

Figure 10. Conceptual FPGA Implementation

An inner-product multiplier may be constructed using existing double-

precision floating-point IP cores developed by Nallatech37. Figure 11 is a block diagram

of the proposed modular inner-product processor (IPP). Yellow blocks identify the

pipelined Nallatech IP cores. Housekeeping commands such as clear, clock, and reset

have been omitted for clarity. The required clock cycles for double-precision floating-

point conversion, multiplication, and accumulation are displayed along the bottom. A

copy of Nallatech’s product sheet is included in Appendix C. Based on the datasheet, the

adder module is the limiting IPP core component, 193 MHz clock frequency.

Performance estimations are calculated with the IPP implemented as a co-processor to the

microcontroller on the development board.

When calculating performance estimations in the co-processor

configuration, a microcontroller to co-processor bus frequency is assumed. The control

algorithm’s intended host is a space-based platform. Therefore, the bus frequency limit

was set conservatively at 50 MHz. This bus frequency is below the 66 MHz currently

used by two commercial space processor vendors, SEAKR Engineering, Inc.38 and EMS

Technologies39. The 48.25 MHz clock rate is the assumed FPGA-to-microcontroller bus

frequency. The input, output, and transfer clock counts are also assumed.

37 Nallahtech. Double-Precision Floating-Point Core. Retrieved 18 Mar. 2005, from <

http://www.nallatech.com/mediaLibrary/images/english/3269.pdf>
38 Jungkind, Dave. SEAKR Space Processor Cards. E-mail to Ron Moon. 06 Dec. 2005.
39 EMS Technologies. ESP603e PowerPC Space Processor Card Data Sheet. Retrieved 30 Nov. 2005,

from < http://www.emsstg.com/pdf/esp603.pdf>

41

DP
Floating

Point
Multiplier

IEEE-754
Double

64-bits

InputInput OutputOutputConversionConversion MultiplicationMultiplication TransferTransfer Add/SubAdd/Sub ConversionConversion

10 clks8 clks 2 clk 19 clks 9 clks4 clk 4 clk

Register (1)

70-bits70-bits

70-bits

64-bits

64-bits

IEEE-754
Double

48.25 MHz 193 MHz 48.25 MHz

Accum
ulator

+/-

Add/Sub

Sw
itch

M
U

X
(2 to 1)

70-bits

D
EM

U
X (1 to19)

M
U

X (10 to1)

(1)

(19)

(1)

(20)

M
U

X (10 to1)

(11)

(10)

Register #2
(1-10)

Register #3
(11-20)

(1)

(2)

Figure 11. Modular Inner-Product Processor (IPP)

Multiple 64-bit input busses will be required feed the IPP’s pipeline. The

disparity between the input-output (I/O) bus frequency and the IPP core operating

frequency would cause the IPP’s pipeline to receive data once per four clock cycles. If

this condition were allowed to exist, the IPP would operate in a data-starved condition.

Therefore, eight 64-bit data busses will be required between the microcontroller and IPP,

four data busses per 64-bit input. Current FPGAs provide I/O pins in excess of the

required 512 pins. Each of the two input’s four data busses will be multiplexed into a

single data stream. Each clock cycle will cause the multiplexer to shift inputs, thus

providing a continuous feed of data to the IPP. This data-feed design is an interim work-

around and is not viewed as a desirable design, but necessary given the current state of

FPGA technology.

The data-bus disparity identifies the significant problem of maintaining

data-flow to a high-throughput custom computing machine. The computer industry

experienced a similar problem when the desktop computer’s CPU and FPU were

mounted as separate devices on a motherboard. The significant I/O delay between the

FPU and CPU led to the hosting of the FPU on the same die as the CPU. This dual

42

hosting allowed the construction of a high-speed data-bus between the two devices.

Custom computing machines would benefit greatly from a similar design technology;

hosting FPGA fabric on the same die as a hard-wired microcontroller. This arrangement

would provide high-performance CCM capability. The I/O bottleneck can also be

avoided if the IPP is connected to a soft-core microcontroller on the same FPGA; the IPP

can potentially run at the clock rate as the microcontroller. These two configurations

would not require the data-multiplexing scheme. The hard-wired microcontroller option

is the desired solution. Hard-wired microcontrollers are capable of operating at a higher

frequency; furthermore, they are not as susceptible to ionizing events in space

applications.

The proposed inner-product processor utilizes a Multiply and ACcumulate

(MAC) methodology. The IPP accepts two IEEE-754 double precision numbers. Both

numbers are converted into a 70-bit Nallatech floating-point format and multiplied. The

resulting product is transferred to accumulator input one. The accumulator is configured

to operate as an adder. The accumulator’s second input normally contains the

accumulated inner-product value; provided by the multiplexer via register one in the

inner, 70-bit, feedback loop. The outer-loop de-multiplexer feeds registers two and three.

The outer-loop de-multiplexer continually steps through an address of one to nineteen;

this stepping process populates registers two and three with the accumulator’s output.

Register three’s last position, twenty in Figure 11, contains a fixed zero. The 50,000-

element accumulation and register population process continues until the final vector

product. An “end-of-vector” flag, not shown, accompanies the final vector product.

At the end of a calculation sequence, the accumulator’s pipeline must be

cleared to obtain the correct final value. The pipeline clear procedure is required because

the accumulation process is carried out in a recursive manner. The accumulator’s

nineteen partial-sums must be added to obtain the total, final sum. These partial-sums

were stored in registers two and three by the de-multiplexer during the MAC process.

When the end-of-vector flag reaches the accumulator’s output, registers two and three

contain the last nineteen partial sums. An important note, the partial sum capture process

is independent of the vector length. However, the registers’ size is dependent upon the

number of accumulator stages.

43

Once a pipeline clear is initiated, the accumulator’s input switch and

multiplexer change positions. With the new input paths, the accumulator now operates as

a nineteen-stage pipeline adder. Register two and three begin feeding the nineteen partial

sums through the pipeline adder. The summing sequence will require a five-layered

process, determined by Equation 5.1 and rounded up.

min log 2() 2(19) . 5.1
4.358 5

Sum g Layers stages Log Eq
Layers

= =
= ≈

Figure 12 provides a register state diagram for the following pipeline clear

process explanation. The first layer begins with nine partial-sum pairs and one non-

paired number. The non-paired number remains in register two, position ten, for the next

layer calculation; it does not pass through the accumulator. The second layer contains

five partial-sum pairs. The third layer contains two partial-sum pairs and one non-paired

number. The non-paired number remains in register two, position three, for the next

layer calculation; it does not pass through the accumulator.

Layer 1 Add Layer 2 Add Layer 3 Add Layer 4 Add Layer 5 Add
Reg 1 Reg 1 Reg 1 Reg 1 Reg 1 Reg 1

X X X X X Sum 1

Reg 2 Reg 2 Reg 2 Reg 2 Reg 2 Reg 2
1 Sum 2 1 Sum 1 1 Sum 2 1 X X X
2 Sum 4 2 Sum 3 2 X X X X X
3 Sum 6 3 Sum 5 3 3 3 3 3 X
4 Sum 8 4 X X X X X X X
5 X X X X X X X X X
6 X X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X
9 X X X X X X X X X
10 10 10 X X X X X X X

Reg 3 Reg 3 Reg 3 Reg 3 Reg 3 Reg 3
1 Sum 1 1 Sum 2 1 Sum 1 1 Sum 1 1 X
2 Sum 3 2 Sum 4 2 X X X X X
3 Sum 5 3 X X X X X X X
4 Sum 7 4 X X X X X X X
5 Sum 9 5 X X X X X X X
6 X X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X
9 X X X X X X X X X
0 0 0 0 0 0 0 0 0 0

Figure 12. Pipeline Clear Process

44

The fourth layer contains one partial-sum pair and one non-paired number. The non-

paired number remains in register two, position three, for the next layer calculation; it

does not pass through the accumulator. The fifth layer contains one partial-sum pair; the

sum is calculated and placed in register one. The “X’s” represent don’t care states.

While the addressing is critical, the calculation and register storage process does not

corrupt the original nineteen partial sums. The pipeline clear process requires one

hundred and thirteen clock cycles. The clock cycle derivation is provided in Equation

5.2.

(19 9) (19 5) (19 2) (19 1) (19 1) . 5.2
113

Pipeline Clear Clock Count Eq
Clock Cycles

= + + + + + + + + +
=

After the pipeline clear, the vector inner-product is complete and initiates

the conversion process back to the IEEE-754 double precision format. The

accumulator’s pipeline is zeroed to prevent corrupting future calculations. The IEEE-754

solution is transferred to an I/O register, setting a “ready” bit, which may be used for

polling or interrupt request communication with the microcontroller. The input

conversion to accumulator output requires forty-three clock cycles per vector pair. The

pipeline clear process requires one hundred and thirteen clock cycles. The conversion to

IPP output requires an additional thirteen clock cycles; the output conversion cost is

required once per vector inner-product calculation.

An algorithm exploitation technique is expected to reduce the inner-

product calculation time, significantly. The accumulator’s feedback loop contains two

major paths: an inner and outer loop. The outer loop is the key factor that allows the IPP

to exploit SNOPT’s solution convergence behavior. During each SNOPT major-minor

iteration sequence, SQOPT requests approximately forty inner-product vector

calculations. After each individual vector inner-product calculation, SQOPT determines

if the solution condition has been achieved. If the solution condition is not met, another

vector inner-product calculation is requested. After the first vector inner-product

calculation, the remaining thirty-nine vectors share kernel elements. The first inner-

45

product value may be stored and utilized to reduce the number of subsequent inner-

product multiplications and accumulations. Subsequent vector inner-product calculations

can avoid multiplying and accumulating 50,000 elements by subtracting off the unique

portion of the original vector inner-product. The new vector’s inner-product value is then

obtained by adding the new unique vector inner-product elements. This process is called

segmenting and is explained further in the following paragraph.

Segmenting the vector within the IPP hardware during the vector inner-

product calculation will reduce SQOPT’s execution time. The user identifies a single

element within the 50,000-element vector prior to the initial SQOPT call. The number of

vector elements preceding and including the user-selected element is called the segment,

or segment size, see Figure 13. A segment size of ten will be used for the analysis in this

thesis.

Figure 13. Segmentation Process

The IPP must calculate the first 50,000-element inner-product before the

segmenting exploitation occurs. An end-of-vector flag accompanies the last vector

element through the IPP to indicate the last vector element pair. When the end-of-vector

flag reaches the output of the accumulator, a pipeline clear is performed, explained

46

previously. With the vector inner-product complete, the inner-product solution resides in

register one of the accumulator’s inner feedback loop. A copy of the solution is passed to

the converter and sent back to the microcontroller. After the solution is stored in register

one, the accumulator is reset, setting all pipeline stages to zero. The accumulator zeroing

procedure must be performed to clear the residual numbers residing in the pipeline. The

accumulator’s input switch and multiplexer is ready to change state and apply the vector

inner-product solution to accumulator input two as soon as the subtraction segment

arrives. The subtraction segment elements are sequenced into the IPP, arriving at the

accumulator’s input one at the same time as the previous inner-product is sent to input

two. Accumulator operation is shifted from addition to subtraction. The ten-element

subtraction segment is provided to the accumulator operating in the subtraction mode.

The effective result is the kernel vector-value required for the subsequent vector inner-

product; see line two in Figure 13. This is not completely true since we have not

performed a pipeline clear. We forego this pipeline clear until the segment addition is

complete, saving one hundred and thirteen clock cycles. A nineteen clock cycle buffer is

inserted to move the subtraction elements out of the accumulator pipeline prior to shifting

to addition. During the buffer clock cycles, zeros are fed to the accumulator’s input one.

Accumulator operation is shifted from subtraction to addition. The subsequent inner-

product is rapidly calculated by accumulating the unique vector segment products from

the following vector; see line three in Figure 13. The final vector pair of the unique

vector segment carries an associated end-of-vector flag. When the end-of-vector flag

reaches the output of the accumulator, a pipeline clear is performed to complete the new

vector inner-product accumulation. The new vector inner-product now resides on the

accumulator’s output. Segmentation reduces the cost for subsequent vector inner-

products to approximately twenty multiply and accumulation operations, vice an entire

50,000. The vector segmenting process continues until the inner-product meets SQOPT’s

solution conditions, which are approximately thirty-nine segmented vector calculations.

The segmenting size is not fixed; however, the segment size must remain

constant for a forty-run solution sequence. If the segment size does not remain the same,

the vector kernel will not remain consistent, causing erroneous results. The SQOPT

developers have not determined an optimal segment size exists, if one exists. Therefore,

47

the IPP design requires a control scheme allowing for a user defined segment size.

Providing variable hardware segmenting requires additional FPGA resources and

increases the IPP’s control complexity. If an optimal, fixed segmenting size is

determined, the IPP’s segmenting control can be reduced to a simple counter slaved to

the vector’s “first element” flag. Side note: a close variant of the segmenting process can

be exploited using current desktop computers. The SNOPT/SQOPT source code would

need to be modified to execute the segmenting process using the CPU’s FPU and

registers. The IPP design in this thesis was pursued due to the desire to embed the

control algorithm.

A SNOPT test case was defined to calculate the projected performance of

the IPP versus the host system, Pentium® IV system detailed in section IV. The values

provided in Table 4 were established to perform the comparison. The vector elements

and inner-products per SQOPT call were established by Dr. Murray40, SNOPT’s author,

and the remaining values by Dr. I. M. Ross41, DIDO’s author. These values represent the

nominal occurrences for a single control algorithm solution.

Vector Elements 50000
SNOPT_Calls/Solution 100
SQOPT_Calls/Solution 1000
Inner-products/SQOPT_Call 40
Inner-products/SNOPT Solution 40000

Table 4. Nominal SNOPT Solution Vector Calculations

Using the values in Table 4, the IPP’s performance is estimated using an

Excel spreadsheet and compared to the host system. The host system’s performance

parameters were recorded using MATLABTM 6.5.1. Two random 50,000-element vectors

were created and their inner-product calculated. The inner-product calculation was

repeated in four different loops: 40, 100, 1,000, and 40,000. The loop number

corresponds to the number of times the inner-product was calculated in the particular

40Murray, Walter. Personal interview. 21 Jan. 2005.
41 Ross, I. M. Personal interview. 21 Nov. 2005.

48

loop. Forty represents the average number of times an inner-product is calculated per

SQOPT call. One hundred, one thousand, and ten thousand correspond to their respective

Table 4 value. The looping tests were conducted to determine if the Pentium® IV’s FPU

utilized acceleration techniques, which were non-linear with respect to the number of

inner-product calls. The calculation times were captured using MATLABTM’s "cputime"

function. The total calculation time was divided by the number of inner-product

operations performed to derive an average calculation time per inner-product. The M-file

performing the baseline test is included in Appendix C. The host system’s operating

system, Windows XP Professional SP2, runs numerous background processes. Many of

the running processes are not controlled by the user but could adversely affect the test

time. Therefore, the inner-product test was repeated four times and the values averaged

in an attempt to mitigate the background process effects, see Table 5.

Vectors Run 1 Run 2 Run 3 Run 4 Each Avg.
40 0.0043 0.0043 0.0035 0.0039 0.0040 seconds

100 0.0030 0.0036 0.0033 0.0031 0.0033 seconds
1000 0.0030 0.0038 0.0030 0.0030 0.0032 seconds

40000 0.0038 0.0043 0.0040 0.0038 0.0040 seconds
Run avg. 0.0035 0.0040 0.0035 0.0035 seconds

Total avg. 0.003606 seconds

Table 5. Pentium® IV Inner-product Calculation Time (50,000 elements)

An estimated IPP performance is calculated using the Figure 11 design

and Nallatech’s reported performance specifications42. Table 6 displays the clock cycles

required for each operation. The FPGA addition/subtraction IP core module is the clock

frequency-limiting component at 193 MHz. The IPP’s implementation is a The CPU bus

frequency is an assumed value and will be addressed later.

42Nallatech. Double-Precision Floating-Point Core. Retrieved 10 Mar. 2005, from <

http://www.nallatech.com/mediaLibrary/images/english/3269.pdf>

49

Cycles Nallatech Cycles
Function Double Freq (MHz) Single
Multiplication 10 202 6
Add/Sub 19 193 14
IEEE to Nallatech 8 227 6
Nallatech to IEEE 9 244 8
Transfer Delay 2 n/a 2
CPU Bus (50 MHz max) 4 48.25 4
FPGA Clock Rate n/a 193 n/a

Table 6. IP Core Clock Cycles and Frequencies

The formula in Equation 5.3 calculates the time required for the IPP to

produce a full 50,000-element vector inner-product. Each of the three lines in equation

5.3 is in terms of time. The “transfer in” on line one of equation 5.3 accounts for the four

clock cycles required to transfer the vector element pairs into the IPP. This transfer cost

will accrue for each element pair, from the two input vectors. Therefore, the number of

vector element pairs multiplies the “transfer in” cost. The frequency of the transfer in

and out operates at the assumed CPU I/O frequency, 48.25 MHz, not the FPGA

frequency.

()_ * _
50

/

() .5.3

_
/

Transfer in Vector pairs
K Inner product CalculationTime

CPUI OFrequency

Conversion Multi Transfer Add Vector Pairs PipelineClear Conversion Eq
FPGAFrequency

Transfer out
CPUI OFrequency

− = +

+ + + + + +
+

Line two of equation 5.3 accounts for the time required by the MAC

process to calculate a 50,000-element inner-product. Each element pair is converted into

the Nallatech format, multiplied, transferred to the accumulator, and added. The IPP is

50

pipelined; the clock count cost is the pipeline’s stage length plus the length of the input

vector. The clock cycles are assumed equal to the pipeline stages. The IP cores are

proprietary and the internal structures are not available for examination. However, a

senior Nallatech designer indicated that this assumption is reasonable43. After the vector

elements are accumulated, the accumulator’s feedback pipeline is cleared. Once the

pipeline is cleared, the solution resides on the output of the accumulator in the 70-bit

Nallatech format. The solution is converted back into the standard IEEE-754 format.

The IEEE-formatted solution is returned to the microcontroller across the I/O bus. The

Excel spreadsheet developed to tabulate the estimated IPP performance is included in

Appendix C.

50 ()

_ _

{(2* _ * _)

_ _ _ }*
_

_

K Inner product CalculationTime segmented

Single Vector IP

Segment Size Transfer in

Segment Subtraction Segment Addition PipelineClear Conversion Transfer out
FPGA Frequency

Vector Calls
SQ

− =

+

+

⎛ ⎞+ + +
+⎜ ⎟

⎝ ⎠

* .5.4

1
_

_

Eq

OPT Calls

SQOPT Calls
Solution

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎡ ⎤⎪ ⎪−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

Equation 5.4 calculates the time required to perform a segmented SNOPT

solution. Note, Equation 5.4 lines two through five are mathematically in series, inline.

The segmentation process requires one full 50,000-element inner-product. Line two of

Equation 5.4 accounts for this cost. The segmentation exploitation begins by subtracting

the segment value from the previous vector’s inner-product solution; see line four of

43 Dunn, Paul. Nallatech Double-Precision FP Cores. E-mail to Ron Moon. 23 Nov. 2005.

51

Equation 5.4. A segment subtraction contains the clock cycles identified in Equation 5.5.

Since the IPP is pipelined, the required clock cycles will be the sum of the MAC pipeline,

and segment size, see Table 6. Technically, the segment addition operation requires the

same number of clock cycles since the accumulator’s add and subtract operations is

equal. Equation 5.6 is provided for completeness.

_
. 5.5

Segment Subtraction converstion multiply transfer subtract
segment size Eq

= + + +
+

_
. 5.6

Segment Addition converstion multiply transfer addition
segment size Eq

= + + +
+

Once the segment subtraction and addition are complete, the new vector

inner-product has been calculated. The new inner-product is converted back to the IEEE-

754 format and returned to the microcontroller. The segmenting cost is multiplied by one

less the number of times that SQOPT calls for an inner-product. The minus one accounts

for the first, full, inner-product that must be calculated. In our example, the segmenting

process is repeated thirty-nine times; see Table 4. Lastly, line four multiplies the

segmenting calls by the number of times that SQOPT is called by SNOPT during the

course of a control algorithm solution; see Table 4.

SNOPT
Solution

(Seconds)
Improvement

Factor Scale Factor
Pentium IV 1.8 GHz 144.25 Baseline Baseline

1 IPP Core w/out I/O 0.30 473.95 0.0021
2 wI/O w/out Segmenting 176.20 0.82 1.2215
3 wI/O w/Segment (DP/DP) 4.52 31.93 0.0313
4 wI/O w/Segment (SP/DP) 4.52 31.95 0.0313
5 wI/O OpenCores Seg. (DP/DP) 44.75 3.22 0.3102

Table 7. Estimated Inner-Product Processor Performance

Table 7 summarizes the IPP’s estimated performance relative to the

Pentium® IV’s FPU. The table is based on calculating a complete SNOPT solution,

52

400,000 inner-products. Without exploiting the segmenting technique, the IPP’s

performance is significantly inferior to the Pentium® IV’s FPU. This performance

difference is primarily due to the difference in clock frequency between the two cores.

The Pentium® IV core operates at 1.8 GHz while the IPP’s core operates at 193 MHz.

Introducing segmenting reverses the results; the IPP provides a significant performance

improvement. Row four in Table 7 displays the projected performance improvement

using a single precision multiplier. Theory and practice indicates that the precision of a

50,000-element multiply and accumulate solution is dominated by the accumulation

process, not the multiplication process44. A single precision floating-point multiplier

requires six clock cycles vice ten for double precision. Equations 5.3 and 5.4 were

modified in the Excel spreadsheet to reflect the multiply savings realized in a single

precision multiplier. The estimated performance improvement achieved with a single

precision multiplier does not appear to provide a significant timesaving, roughly three ten

thousandths of a second for an entire SNOPT solution. Therefore, it is recommended that

the IPP design avoid the potential schedule risk and maintain the double precision

multiplier, exploring the single precision multiplier design should time and resources

permit.

b. Modular Implementation – Public
The second potential IPP development path involves constructing the IPP

described in the preceding paragraph using publicly developed modules. An internet-

based organization called OpenCores.org45 hosts the development and distribution of

open source IP cores. The development projects are primarily developed through a

consortium of individuals. The OpenCores organization uses CVS46 to maintain and

distribute the latest version of an IP core along with providing the core’s development

pedigree. Usage of the OpenCores modules is governed by a document modeled after the

Lesser General Public License47.

44 Loomis, Herschel. Personal Interview. 23 Nov. 2005.
45 OpenCores Organization. Website. Retrieved 05 Mar. 2005, from < http://www.opencores.org>
46 Opencores Organization. CVS Howto. Retrieved 26 Nov 2005, from <

http://www.opencores.org/projects.cgi/web/opencores/cvs_howto>
47 The GNU Operating System. GNU Lesser General Public License. Retrieved 26 Nov. 2005, from <

http://www.gnu.org/copyleft/lesser.html>

53

The inner-product processor (IPP) may be constructed in the same format

as Figure 11 using modules obtained from the OpenCores organization. The OpenCores

site currently contains a CF Floating-point Multiplier and HCSA Adder48. The CF in the

Floating-point Multiplier’s title is notable and deserves a brief explanation. CF is an

abbreviation for Confluence, a programming language that compiles into VHDL,

Verilog, or C. The Confluence developers claim that CF provides high order functional

programming, understandable source-code, and a two to ten time reduction in code size49.

The IEEE-754 compliant multiplier may be configured to compute in

single, double precision and combinatorial, or pipeline. The pipeline latency is four plus

the mantissa accuracy50; for this analysis, fifty-six is utilized. The multiplier’s clock

frequency is assumed greater than 150 MHz. The Hierarchical Carry Save Algorithm

(HCSA) adder accepts 128-bit operands and operates at 6.64 nanoseconds, 150 MHz51.

The HCSA adder is assumed to require nineteen clock cycles to complete a pipeline

addition. Using the specifications and assumptions presented, the OpenCores IPP

performance is modeled using the same Equations, 5.3 through 5.6, and Excel

spreadsheet. Row five in Table 7 shows the predicted the performance of the OpenCores

IPP to rival the Nallatech-based design.

While the IPP could be constructed using the OpenCores multiplier and

adder, this development path is not recommended unless the Nallatech IP cores cannot be

purchased. As noted in the previous paragraph, many assumptions were made to estimate

the OpenCores IPP performance. The performance estimate is a likely a best-case

scenario. Furthermore, the OpenCores IP modules will require modification. The

OpenCores HCSA IP module is not currently pipelined; therefore, the design must be

modified prior to implementation. While the existing modules provide a starting

foundation, they do not come with professional documentation. Attempting to

48 Opencores Organization. Projects by category. Retrieved 01 Nov. 2005, from <
http://www.opencores.org/browse.cgi/by_category>

49Confluence. Confleunce Overview. Retrieved 26 Nov. 2005, from <
http://www.confluent.org/wiki/doku.php>

50 Opencores Organization. CF Floating Point Multiplier. Retrieved 01 Aug. 2005, from <
http://www.opencores.org/projects.cgi/web/cf_fp_mul/overview>

51 Opencores Organization. HCSA Adder. Retrieved 01 Aug 2005, from <
http://www.opencores.org/projects.cgi/web/hsca_adder/overview>

54

understand another engineer’s design, without credible documentation, has the potential

to consume more time than creating a new design. A professionally supported product

has the benefit of technical support. A company will often allow the design engineer to

be contacted to answer questions. While the OpenCores designers can be contacted, their

response is not required, nor the response time known.

c. Custom Inner-product Processor

The final IPP design option is to forego the pre-fabricated IP core modules

and design a completely custom FPGA core. This design could implement the scheme

outlined in Figure 11 or exploit other implementation methods. Other methodologies

exist by which vector multiplication and accumulation are exploited using parallel

operations52. The investigation and pursuit of these designs are left to the student, or

developer, employed to execute this migration phase.

Should the migration effort pursue the design of a completely custom

FPGA core design, it is recommended that the design use a hardware descriptive

language (HDL) such as VHDL or Verilog, previously discussed. An HDL provides

three main benefits over schematic designs. HDL designed components and modules can

be simulated immediately using the Xilinx or third party simulator, such as ModelSim®.

Secondly, an HDL design is product or device independent; a common buzzword is

technology independent. This provides design portability across different vendors, or

among a vendor’s own product line, to locate the most cost effective hosting device.

Lastly, Xilinx claims that large designs are better managed using HDL design tools, vice

schematic design tools53.

52Loomis, Herschel. Personal Interview. 23 Nov. 2005.
53Xilinx, Inc. Design Entry and Synthesis. Retrieved 04 Dec. 2005, from <

http://toolbox.xilinx.com/docsan/xilinx7/books/data/docs/dev/dev0014_5.html>

55

VI. FUTURE WORK ROADMAP

The three-phase migration process further subdivides into task elements. Figure

14 displays the relationship between the task elements and each phase. Each element is

formulated to require the talents of a primary engineering discipline and focus on a single

task. Each task element contains a recommendation regarding whether academia or

industry should perform the task. It is recognized that the academia or industry

recommendation may not be followed. Therefore, a recommended academic discipline

for each task element will be included. Because each task element has the potential to be

accomplished by a thesis student, each task element is designed to fit within a thesis

student’s schedule.

Figure 14. Migration Task Breakdown

A. PHASE ONE: SOFTWARE
Phase one contains two work elements; generating the standalone executable

algorithm and evaluating single-point precision.

56

1. Stand-alone Algorithm

The hardware and work required to migrate the MATLABTM control algorithm

into a standalone program is outlined in the work, development, and task sub-sections.

Of the two phase one tasks, the stand-alone algorithm is the most time consuming and

challenging.

a. Scope of Work
Generating the standalone algorithm will require modifying, translating,

compiling, and linking the existing spacecraft and DIDO functions. Once this work is

complete and proper operation verified, the spacecraft and DIDO portion of the control

algorithm must be linked with SNOPT. This two-step approach assists in the localization

of error sources by “half-splitting” the overall control algorithm. SNOPT is provided by

Stanford University as a “C” program. SNOPT does require installation and setup effort,

which is outlined in the provided “help” files; see Appendix A. Once installed and

configured, SNOPT may be provided test cases to verify proper operation. The

spacecraft and DIDO modules have yet to be executed outside the MATLABTM

environment. Therefore, these modules will need to be modified to provide intermediate

solutions prior to translation.

The MATLABTM 6.5.1 compiler will be used to translate the MATLABTM

function files. The command and associated options were detailed earlier. Two C files

are generated during the translation process: source and header. The Compiler can also

compile the code. By default, the source code is compiled for the host platform’s CPU

and operating system. This setting can be changed by installing the desired compiler and

configuring MATLABTM to call the new compiler. The additional installation and

configuration provides the ability to cross-compile for another platform. The steps to

change MATLABTM’s default compiler is located in the installed MATLABTM’s help

files and can be found within the support section of the MathWorks website. The

translated code will be linked and compiled using a third-party integrated development

environment; the reason for this recommendation was discussed earlier in this thesis and

will not be readdressed.

57

Modifying each spacecraft and DIDO function module to display, or write

to file, input and output results prior to translation will assist in isolating migration errors.

Each spacecraft and DIDO mode must be converted into a function before the Compiler

will translate the module. Modifying the MATLABTM functions to display the results

prior to translation will assist in testing. The translated function’s operation may be

verified by passing in known test cases. The translation process makes the source-code

very difficult to read, even by an experienced programmer. Therefore, it is recommended

that the modifications be made to the functions in the MATLABTM script files. A simple

main file can be written to pass a known test case to the function. The main file and

function is then compiled, linked into an executable program. The program is executed

and the results compared to the corresponding MATLABTM function. Each of the

MATLABTM functions’ operation has been previously verified. Therefore, if the

corresponding compiled and MATLABTM function results differ, a faulty compiled

function is identified and can be corrected prior to linking it with other translated

functions.

After the functions have been translated and tested individually, a

programming-development environment is used to link the translated and compiled code

into an executable program. The source, header, and MATLABTM library files must be

imported into a programming-development environment. The selection of the integrated

development environment will be influenced by MATLABTM’s compiler library support.

MATLABTM 6.5.1 contains math library support for Borland®, Digital, lcc, Microsoft®,

and WATCOM. The library support for each compiler is version dependent. The

MATLABTM library support for the different compilers and versions is the following:

Borland® versions 5.0, 5.3, and 5.4; Digital 5.0 and 6.0; lcc versions not specified;

Microsoft® Visual Studio® 5.0, 6.0, and 7.0; and Watcom 10.6 and 11.0. One could

select and integrated development environment that does not support the identified

compilers; however, this is strongly discouraged. The MATLABTM libraries provide the

necessary C code to perform calculations previously performed by MATLABTM in the

translated code. Selecting a non-supported compiler will require the programmers to

write their own math library to perform the calculations. Writing a math library to

58

integrate into the control algorithm is a project, itself. Therefore, utilizing an integrated

development environment using one of the identified compilers is strongly

recommended.

An integrated development environment provides the user with powerful

automated tools, depending on the selected environment. The translated functions and

library brought into the development environment must be compiled and linked. Several

professionally supported development environments now perform the linking

automatically, in the background. The compiler examines the main, header, and function

files and determines the dependency between the files. The resulting work of this

examination is the creation of a “make” file. The make file describes the relationships

and dependencies that exist in order to compile the code into an executable program. In

the past, and with less capable development environments, the make file is manually

written. Programmer competency in writing a make files is slowly dwindling due to the

automated process performed by modern development environments. The Microsoft®

Visual Studio® 6.0 integrated development environment was tested on a simple main and

function file. The environment produced the make file in the background and generated

the executable program with little effort. The Microsoft® Visual Studio® 6.0 integrated

development environment was utilized simply because it was available and MATLABTM

provided library support; no other selection criteria were utilized.

The source-code is compiled and the individual modules linked into a

standalone program. The linking process includes linking the main, function, and

MATLABTM math libraries into an executable program. The development environment

is useful for debugging problems encountered during the compile and linking process.

As mentioned earlier, each function should be individually translated, compiled, and

proper operation verified prior to attempting to link and compile the entire algorithm.

After the individual functions are verified, a short main file will need to be written to

request the ordered attitude, which then calls the “Mag_Open_Main” function to initiate

the control algorithm. Once the main file is written, it is recommended that function calls

be added, individually, to the program. After each addition, the program should be tested

and the results verified against the MATLABTM variant. The process is repeated until all

59

of the functions are incorporated and the program is complete. Performing the outlined

process is tedious; however, the process will quickly identify faulty functions.

b. Development Hardware and Software

Much of the development hardware and software required for this phase

has already been discussed and is currently available within the guidance and control lab.

The host system, Dell Dimension 4400, has MATLABTM 6.5.1 and Microsoft® Visual

Studio® 6.0 installed. Furthermore, should the developer desire to use the GCC compiler

on a Linux operating system, the host system contains a rack-mount hard-drive system.

A second, identical, hard-drive contains the Red Hat Work Station 4.0 operating system.

The host system is capable of performing the phase one through three developments.

Furthermore, maintaining the same host system provides each phase the ability to

perform equitable control algorithm performance comparisons.

c. Task Assignment
The migration to stand-alone control algorithm should be accomplished by

industry. A computer science professional is a better choice to perform the stand-alone

application development. Generally, professional programmers are more proficient at

using translators and integrated development environments. While graduate students are

intelligent and work diligently, on average, they do not posses the same level of

programming technical expertise. Furthermore, hiring a professional provides the

flexibility to locate and hire a programmer intimately familiar with the translation and

compiler tools for this project. The disparity in proficiency would, most likely, lead to a

longer phase one development time, should a student be used to perform the work.

If the task is not assigned to industry, the migration to a stand-alone

control algorithm should be performed by a Computer Science thesis student. The ideal

candidate would be a Space Systems Engineering student following the computer science

track, vice a student within the normal computer science curriculum. The Space Systems

Engineering students understand the algorithm’s application due to their controls,

optimization, and dynamics courses. These courses are an integral part of the Space

Systems Engineering curriculum and provide control algorithm familiarization

opportunities, opportunities not afforded in the regular Computer Science curriculum.

60

2. Evaluate Single-Point Precision Performance

The control algorithm’s execution time may be further reduced if the IPP’s

multiplier does not require double precision. In general, embedded single-precision

floating-point calculations are faster than their double-precision counterparts54,55.

Control algorithm calculations that can be shifted into single-point precision, without

adversely affecting precision, will result in faster algorithm execution.

a. Scope of Work
The control algorithm’s single-point precision can be evaluated using

MATLABTM. MATLABTM contains a “single” function that forces a number or

computational solution to single-point precision. Using the single function, the control

algorithm or its individual functions may be evaluated for precision affects. If performed

on the host system, the computation time is not expected to change. MATLABTM, and

the Pentium® IV’s FPU, performs all calculations in double precision and reports the

results in the requested format.

b. Development Hardware and Software
A personal computer, MATLABTM, and the control algorithm are required

to perform this analysis. The control algorithm is comprised of the spacecraft model and

DIDO. This evaluation scrutinizes precision, not execution speed. Therefore, the host

computer is not required to perform this study. It is recognized that other mathematics-

based software program exist that could perform the single-double precision evaluation.

However, the control algorithm’s functions are written in, and executable within, the

MATLABTM development environment. The development time and effort required to

translate, or reproduce, the control algorithm in different mathematical software is

projected to be excessive.

54 Nallahtech. Double-Precision Floating-Point Core. Retrieved 18 Mar. 2005, from

< http://www.nallatech.com/mediaLibrary/images/english/3269.pdf>
55 Nallahtech. Single-Precision Floating-Point Core. Retrieved 18 Mar. 2005, from

< http://www.nallatech.com/?node_id=1.2.2&id=20&searchTerm=single%20point%20floating>

61

c. Task Assignment

The numerical analysis is best performed by academia. A student with a

math or numerical analysis background is desired. Specifically, a student with a

computational mathematics background is highly desirable. The candidate should also

posses programming and MATLABTM experience.

B. PHASE TWO: HARDWARE
Phase 2 is comprised of two work elements: establishing the embedded

development board and cross compiling the algorithm for embedded operation.

1. Establishing the Embedded Development Board

Establishing the embedded development board’s operation requires a defined

scope of work, embedded development hardware, and a student or contractor.

a. Scope of Work
This work element establishes the embedded development board to an

operable state. The real-time operating system is loaded into the board ROM, the

onboard peripherals made operable, and the board support package utilities tested. These

tasks may appear to be a trivial work element. However, this capability is being

established in a lab that does not currently posses embedded systems development

experience and capability. Establishing the development board in a fully operable state

and building experience with its operation will help minimize erroneous troubleshooting

once the algorithm is migrated onto the development board.

After the development board is operating, simple programs will be cross

complied and executed to verify proper board operation. The experience gained cross

compiling and debugging will be recorded. Often, the manufacturer’s support

documentation is written poorly, missing key steps that are assumed or simply omitted

out of error. Cross-compiling, debugging, and running simple programs provides an

opportunity to develop comprehensive “in-house” procedures for migrating programs

onto the development board. In this section, cross-compiling includes the development

processes required to download an executable program onto the development board.

62

After the cross-compiling and downloading of simple programs is

perfected, the developers will cross-compile control algorithm modules into executable

code. This effort will identify, early on, control algorithm code that does not compile to

the embedded hardware. Algorithms written in high-level programming languages, such

as C, can utilize functions that may not have a cross-compiled equivalent for the

embedded hardware. In such a case, the offending function must be rewritten using

hardware-supported functions. Modules, which fail to cross-compile, will be studied and

the code modified to support the embedded hardware.

b. Development Hardware

The double-precision floating-point unit (DPFPU) requirement narrowed

the list of potential development boards significantly. The research and

recommendations are based upon locating current commercially available products. The

DPFPU requirement presented a significant challenge when trying to locate an FPGA-

based board. An important note, phase two does not require an FPGA; only phase three.

A development board hosting an FPGA would reduce program cost and redundant

development effort since the same development board would be reused. Phase two

migration can be satisfied using a hard-core microcontroller containing a DPFPU. If the

hard-core microcontroller approach were selected for phase two, an FPGA-based

development board must be purchased for phase three. This approach will increase the

program cost, but would decouple the development effort. IPP designers could design

and develop in parallel with phase two. With this information in mind, a hard-core and a

soft-core (FPGA-based) board are recommended and their benefits discussed.

c. Hardcore CPU and FPU Board

The AMCC PowerPCTM 440EP Evaluation Kit is very capable and meets

phase two hardware requirements. The PowerPCTM 440EP is a hard-core

microcontroller. The PowerPCTM 440EP microcontroller operates in excess of 500 MHz,

over two times better than the FPGA-based development board. While the development

board is not space-rated, other PowerPCTM microcontroller variants are on orbit. The

common PowerPCTM pedigree and architecture will help identify non-compliable

functionality, early. This identification will help transitioning the control algorithm to a

63

space-rated processing board containing a PowerPCTM. The advantages and

disadvantages of the AMCC development board are summarized below.

Figure 15. AMCC PowerPC 440EP Evaluation Board56

Pros:
Double precision floating-point unit
256-Mbyte RAM
32-Mbyte Flash ROM
Ethernet I/O connector
USB I/O connector
Linux Kernel OS and File system included on CD-ROM
Firmware Bootstrap – in flash memory
Kit cost: approximately $2,590.8057

Cons:
Lacks onboard FPGA
Included Linux OS is not a real-time OS
Not space rated

56 Provided courtesy of AMCC.
57 Rodreguiez, Thomas. “EV-440EP-WIN-01 Price Quote.” E-mail to Ron Moon. 02 Dec. 2005.

64

d. FPGA-based Development Board

The Xilinx PowerPCTM & MicroBlazeTM Development Kit Virtex-4 FX-

12 Edition is impressive. This FPGA-based development board is very capable and has

the potential to meet phase two hardware requirements after significant integration effort.

The Xilinx ML403 board supports soft-core microcontrollers: MicroBlazeTM and

PowerPC405. The Xilinx PowerPC & MicroBlazeTM Development Kit Virtex-4 FX-12

Edition product sheet is provided in Appendix B.

Figure 16. Xilinx Virtex-4 ML403 Development Board58

Pros:
FPGA-based development board
64-Mbyte DDR SDRAM
1-Mbyte ZBT SRAM
512-Mbyte Compact Flash EPROM
Ethernet I/O connector
USB I/O connector
16x2 LCD Display
GNU Tools and Debugger
MicroBlazeTM IP Core
Kit cost: approximately $895

58 Provided courtesy of Xilinx, Inc.

65

Cons:
Lacks Double-precision FPU

 Lacks RTOS

e. Recommendation

Unfortunately, neither of the discussed development boards fulfills the

needs for both phase two and three. The AMCC evaluation board meets the requirements

for phase two but lacks an FPGA for phase three. Therefore, the AMCC board will not

support phase three’s hardware accelerator. Xilinx’s Virtex-4 ML403 development board

has the potential to meet phase two and three’s requirements but will require significant

design and integration efforts. Commercial developers are not currently selling soft-core

IP microcontrollers with an integrated DPFPU.

The AMCC PowerPC 440EP development board would provide an

excellent migration platform. The development board’s 256-Mbyte of RAM, 32-Mbyte

of ROM, 440EP PowerPC microcontroller and DPFPU provide the necessary hardware

processing capability to host the compiled control algorithm. However, the development

board does not contain an FPGA. A second, FPGA-based development board would be

required to support phase three’s hardware accelerator design. The product data sheet for

the AMCC 440EP PowerPC Evaluation Board is provided in Appendix B.

The Xilinx ML403 supports two soft-core microcontrollers: Xilinx’s

MicroBlazeTM and PowerPCTM 405. The MicroBlazeTM microcontroller recently

received the addition of a single-precision FPU. The PowerPCTM 405 microcontroller

does not contain a floating-point unit. Both microcontrollers would require a DPFPU.

The DPFPU would need to be purchased through a third-party company or designed.

Once obtained, the DPFPU will require integration with the microcontroller via a high-

speed data and control bus. An existing compiler will need to be modified, or one

created, to support the new microcontroller and DPFPU combination. Lastly, the

combination will require integration with a RTOS prior to supporting the development

board and compiled control algorithm. The DPFPU design and integration process

outlined is not a trivial task.

The embedded processing and FPGA sectors are progressing rapidly. The

MicroBlazeTM microcontroller’s FPU debuted May 16, 2005. Borrowing loosely from

66

Moore’s law, one could predict the release of a DPFPU IP core for the MicroBlazeTM

around November 2006. However, Xilinx is not working on, nor planning to create, a

double-precision floating-point unit for the MicroBlazeTM IP core59. Since phase one

migration is not completed, phase two migration efforts could wait and anticipate the

release of a soft-core microcontroller with an integrated DPFPU from a third-party

vendor. In the meantime, phase two development can progress using the AMCC

Evaluation Board. A final option would be to purchase the AMCC board for phase two

and the Xilinx board for phase three development. Purchasing both development boards

enables immediate and concurrent phase two and three development.

f. Task Assignment

This task assignment carries two recommendations based on the board

selection. If the FPGA-based board is selected, the design and integration of a DPFPU

with either soft-core microcontroller should be performed by industry. While students

could perform this effort, a professional company is better equipped and staffed to

provide an established, functioning, and well-documented development board in a timely

manner. If academia retains the development, a student from the Engineering

curriculum, computing track, would be best suited to perform this work.

If the AMCC hard-core microcontroller development board is selected, a

thesis student or long-term research assistant, vice a dedicated hired contractor, is the best

person to establish the embedded development board’s operation. The development

board would be operated over a period of twelve to twenty-four months. The financial

cost to maintain a dedicated contractor over this period would be excessive. A student in

the Space Systems Engineering – Electrical Engineering track would be best suited to

perform this work.

59 Gazdik, Nate. “MicroBlazeTM Floating Point Unit.” E-mail to Ron Moon. 05 Dec. 2005.

67

2. Cross-compile Program

a. Scope of Work

This work element compiles the control algorithm for operation on the

embedded development board. The steps required create an embedded algorithm were

displayed in Figure 6 and discussed in section IV. The translated C-code function files

are to be cross-compiled, linked, relocated, and downloaded for operation on the

embedded microcontroller. For the remaining discussion, the term “cross-compile” will

be used to depict the entire compile to download process. The modular build process

discussed in phase one’s scope of work, migration to stand-alone program, should be

mimicked. The main file should be compiled, first, and verified. Then, individual

functions should be cross-compiled and merged with the main file. The cross-compiled

functions should contain input and output capability to verify the functions’ proper

operation against the corresponding MATLABTM control algorithm function. Individual

functions are added until the entire control algorithm is operating on the embedded

development board. The process outlined in this paragraph is tedious, but quickly

identifies problematic functions.

b. Development Hardware and Software
Often the compiler, linker, debugger, and locator are purchased with the

development board, usually part of the Board Support Package (BSP). However, if the

microcontroller and RTOS are known, work may be able to progress prior to actually

purchasing the development board. GCC60 is an open source development tool that

contains a cross-compiler, linker, debugger, and locator. GCC is often found as part of

the utility programs for Linux and UNIX based computers. The new MAC operating

system “OS X” is Linux-based and capable of hosting GCC. Furthermore, the most

promising microcontroller for hosting the control algorithm is a PowerPCTM. The Apple

iMac’s CPU is a PowerPCTM. An iMac is available for use in the Guidance and Control

Lab. However, the iMac is not currently running OS X. The OS X operating system

would need to be purchased and installed. Compiling to a host system’s processor that

closely matches the microcontroller is advantageous. The PowerPC core series share the

60 GCC. GCC Homepage. Retrieved 27 Nov. 2005, from <http://gcc.gnu.org>

68

same instruction sets. While not the exact embedded PowerPC microcontroller,

compiling the control algorithm code on a PowerPCTM CPU will advance the

understanding of how the control algorithm will behave, vice compiling to an x86 CPU.

This is applicable for phase one and two development.

The x86 based host computer in the Guidance and Control Lab has two

rack mount hard drives, each with a different operating system. One hard drive contains

Windows XP Professional, SP2. The second hard drive contains Red Hat Linux Work

Station 4. Red Hat contains GCC as a native compiler. However, the compiler is

configured to support an x86 processor. The Red Hat GCC compiler may be able to be

configured to perform as a cross-compiler. This avenue was not researched further due to

time constraints.

c. Task Assignment

The cross-compile work element would, most likely, progress at a faster

rate if a professional embedded programmer performed the work. This recommendation

is not based on student inability; rather, the recommendation is based on professional

proficiency and providing the final product in an expeditious manner. If the work is to be

performed in the academic environment, a student experienced in embedded

programming should perform the task. Embedded programming falls within the

boundaries of Electrical Engineering and Computer Science. However, most Computer

Science curriculums focus on object oriented programming and forego the topics critical

to embedded programming. Therefore, the potential student’s proficiency with

embedded programming should drive the selection process, not the engineering

discipline.

C. PHASE THREE: ACCELERATOR

Phase 3 contains three work elements: Design the IPP, modify the compiler, and

integrate the IPP into the development board design.

69

1. Design and Test IPP

The developer will design and test one of the three potential IPP development

paths presented in section four.

a. Scope of Work
IPP development will be performed within an integrated development

environment. IPP design exploration, performed in conjunction with this research,

utilized Xilinx’s ISE 7.1i programmable logic design environment. ISE 7.1i was used in

this research due to availability and the development environment’s ability to meet the

research goals. Other programmable logic development environments exist, but were not

explored. The recommended FPGA-based development board is a Xilinx FPGA and

board. Therefore, the Xilinx development environment, ISE, was used to in an effort to

reduce potential compatibility issues.

ISE 7.1i is relatively easy to use due to the Project Navigator graphical

user interface. The IPP FPGA design may be constructed using a HDL programming

language such as VHDL or Verilog, or constructed using a schematic method. The

schematic method involves selecting basic building blocks from a library. The blocks are

then wired together by the designer to create the functional design. If the migration effort

follows the Nallatech design option, the schematic design method will be followed. The

Nallatech modules are provided as NGC files on a CD-ROM and cost $9,20061. The IP

core data sheet is provided in Appendix C. If the IPP is designed using the OpenCores

modules, IPP development will also use the schematic design method. Should the

migration effort decide to follow the original design path, the design should be written in

a HDL such as VHDL, not the schematic design method. However, individual modules

can be written in one of the HDL formats, then converted into a schematic library

symbol. Once converted into a symbol, the module can be wired within the schematic

design environment. It is strongly recommended that the design effort utilize a HDL

whenever possible. The Xilinx compiler optimizes the HDL files for optimal FPGA

resource utilization. The schematic design method is not as effective at performing this

optimization. Additionally, it is recommended that a single HDL is used, VHDL or

61 Houlihan, Paul. Phone conversation. 18 Mar. 2005.

70

Verilog. An overall design can use modules written in different languages. However,

Xilinx’s website discussion board contains numerous posts by people trying to solve a

development problem due to modules using different HDL languages.

As the design progresses within ISE, the IPP is tested within the ISE or

externally using third-party modeling tools. The internal ISE testing module provides

limited testing. However, ISE can identify improper results, estimate propagation delays,

and identify the amount of FPGA resources required by the design. If the internal testing

capabilities are not sufficient, third-party testing software may be used. The school

currently uses ModelSim®62, a powerful HDL simulator. The simulation testing

capabilities provided by ISE and ModelSim® helps reduce the frustration of

troubleshooting design errors on the development board. Many design errors are located

prior to downloading the design to the FPGA. Once the IPP design is complete and

tested using simulation tools, the design is downloaded into the FPGA for hardware

testing. Test vectors can be stored in the development board’s memory. The IPP test will

include calling the test vectors from the development board’s memory and performing the

inner-product calculation. The testing metrics are calculation time and solution precision.

A benefit of the design and simulation software, ISE and ModelSim®, is that this

software can reside on the host computer. The purchase of additional computer hardware

is not required.

b. Development Hardware and Software
The FPGA-based board selection was discussed earlier; therefore, the

discussion will not be duplicated other than reiterate that the cost of ASIC fabrication for

research designs is beyond current research funding levels. Once a complete deign

scheme is formulated, microcontroller, DPFPU, and IPP, obtaining an ASIC fabrication

cost estimate would be prudent for cost comparison purposes.

The recommended development board for phase three is an FPGA-based

development board. Currently, industry does not offer a single development board

hosting a microcontroller, DPFPU, and FPGA. As development phases one and two

62 ModelSim®. Products List. Retrieved 11 Dec. 2005, from <

http://www.model.com/products/60/default.asp>

71

progress, industry may release a development board containing these desired capabilities

on a single board. Currently, the most promising board is the Xilinx Virtex-4 ML403

Development Board.

The developer will require an integrated development environment, such

as ISE 7.1i. A copy of Xilinx ISE will need to be purchased. A limited-use version of

ISE 7.1i is available for download. The developer will need to verify if the limited

version will meet the project’s design needs. A limited-use version of ModelSim®,

ModelSim® XE-III Starter, may be downloaded from Xilinx’s website. The ModelSim®

company provides Xilinx users a one-year license after registering via e-mail. If the

developer determines that the limited version does not meet the project’s design needs, a

site license copy of ModelSim® PE for VHDL costs $5538.0063. The ModelSim®

product is much more capable than the simulation software included within Xilinx’s ISE

and will help the individual assigned to the task to identify design problems prior to

embedded operations.

c. Task Assignment

The IPP design and implementation work would, most likely, progress at a

faster rate if a professional FPGA core designer performed the work. Similar to the

programming work, this recommendation is not based on student inability; rather, the

recommendation is based on professional proficiency and providing the final product in

an expeditious manner. However, building the proposed Nallatech-based IPP as thesis

work is within the capability of a Naval Postgraduate School Electrical Engineering. If

the work is to be performed in the academic environment, an Electrical Engineering

student proficient with HDL programming should perform the task. A student with

experience using a FPGA integrated development environment is desired. However, this

experience can be provided through online and on-site vendor classes.

2. Modify Microcontroller/IPP Compiler

The addition of the IPP changes the control algorithm’s use of the

microcontroller, which includes the DPFPU. In phase two, the microcontroller’s DPFPU

63 Reynolds, Dennis. Phone conversation. 13 Dec. 2005.

72

performed the inner-product calculations. With the introduction of the IPP, the control

algorithm can realize a performance increase by using the IPP. In order to achieve this

performance improvement, the microcontroller’s compiler must be updated to reflect the

existence, and potential use, of the IPP.

a. Scope of Work
A developer will modify an existing compiler to include IPP functionality.

The project’s selected microcontroller will be supported by one, possibly more, software

compilers. A compiler supporting the selected microcontroller and DPFPU will be

modified to reflect the presence and capability of the IPP. The new compiler will direct

the use of the IPP each time the control algorithm requests an inner-product, vice the

DPFPU. After compiler modification, the compiler will be introduced into the

programming-integrated development environment. This integration will allow the

compiling of the control algorithm modules using the new, modified, compiler. The

deliverable from this work element is a modified compiler and a compiled control

algorithm. The brief scope of work explanation may make this task appear trivial.

However, compiler generation, or modification, is not a simple task. The work is tedious

and requires detailed knowledge of the hardware components involved. The tools used to

perform compiler work are common to the tools used in phase one.

b. Development Hardware and Software
This should not require the purchase of new hardware or software. The

developer should be able to utilize the same host system and programming-integrated

development environment used in phase one to modify the compiler. The developer will

require access to the development board and working IPP.

c. Task Assignment

The migration to stand-alone control algorithm should be accomplished by

industry. A professional programmer is the best choice to modify the existing compiler.

Specifically, the company that wrote the existing compiler for the microcontroller should

be contracted to perform this work. Generally, professional programmers are more

proficient at writing compilers. A detailed understanding of the microcontroller is

required to modify the existing compiler. The project’s schedule would benefit from

73

using a programmer that is currently familiar with the microcontroller. While students

are intelligent and work diligently, on average, they do not posses the same level of

programming technical expertise. The disparity in proficiency would, most likely, lead to

a longer phase one development time, should a student be used to perform the work.

If the task is not assigned to industry, the compiler modification should be

performed by a Computer Science thesis student. The ideal candidate would be a Space

Systems Engineering student following the computer science track, vice a student within

the normal computer science curriculum. The Space Systems Engineering students

understand the algorithm’s application due to their controls, optimization, and dynamics

courses. These courses are an integral part of the Space Systems Engineering curriculum

and provide control algorithm familiarization opportunities, opportunities not afforded in

the regular Computer Science curriculum. The student should form a partnership, or

trusted working relationship, with the company that wrote the original compiler. If it can

be arranged, it may be beneficial for the student to work at the company’s facility for an

extended period of time. This on-site work will foster a working relationship with the

compiler developers.

3. Integrate IPP
After the IPP and the compiler modification are complete, the design must be

integrated into the development board.

a. Scope of Work
The IPP module design will be instantiated into the development board’s

FPGA. The new control algorithm, compiled with the modified compiler, will be

downloaded into the development board ROM. The board will be tested for proper

operation. The control signal generation time and precision will be compared to the

MATLABTM baseline. It is difficult to provide additional details outlining this work task

due to the number of development path variables. These variables include the IPP

development path, the integrated development environment software, and the modeling

software selected.

74

Integrating the IPP into the development board will be challenging and

may require more than a single person. It is highly recommended that the person

performing the integration work overlap with the IPP design and Compiler modification

work. The overlap should be, at a minimum, three months. The integrator will require

the assistance of the IPP designer and compiler writer. It would be ideal if the two, or

more, personnel performing the IPP design and compiler modification also perform the

integration work. However, as explained at the beginning of this section, the task

elements were broken down into work elements capable of fitting within a thesis

student’s schedule. Since integration work often uncovers previously undiscovered

errors, the integration work may require more than one person.

b. Development Hardware and Software
This task will utilize hardware and software obtained in the earlier phases

of work. New hardware and software should not be required unless a new development

board is obtained. Should a new development board be introduced, the similar utilities,

tools, and support software identified in the earlier sections will need to be obtained.

c. Task Assignment
Selecting an individual to perform the IPP integration will be difficult.

Systems integration is a challenging interdisciplinary field. The integration phase would

most likely progress at a faster rate if industry performed the work. Industry will likely

avoid accepting an integration project that has been piecemealed between academia and

industry, unless they have been a significant contributor in the development. The

recommendation to employ industry is not based on student inability; rather, the

recommendation is based on professional proficiency and the ability of industry to draw

from various engineering disciplines to provide the final product in an expeditious

manner.

While industry would be the best candidate, the most likely result will be

that the systems integration will be preformed by a thesis student. The IPP integration

and compiled code migration fall within embedded systems development. The student

system integration recommendation closely follows the embedded programming

recommendation provided in phase two. The IPP integration work falls within the

75

boundaries of Electrical Engineering and Computer Science. Therefore, it is

recommended that the IPP integration be carried out by two students, an electrical

engineering and computer science student. Additionally, the integration work should

overlap with the IPP design and Compiler modification work. The overlap will allow the

system integrators to familiarize themselves with the existing work, prior to the IPP

designer and Compiler programmer’s departure.

D. FURTHER RESEARCH

1. State Update Rate - Sensor Saturation

Classical control theories are constrained in their ability to provide control signal

updates by the rate at which their sensors can provide state determination updates. The

work performed in association with this migration plan suggests that the real-time

optimal-control algorithm may be able to decouple the sensor update rate for some

control applications. If the system’s control model is accurate and error-generating

disturbances are small in relation to the control authority, the control algorithm may be

able to achieve acceptable performance even though the sensor update rate is slower than

the control command rate.

Each real-time optimal-control algorithm solution provides the complete control

sequence required to go from the existing state to the ordered final state. In spacecraft

attitude-control applications, each control algorithm solution provides the entire control

signal stream required by the torque devices to maneuver the spacecraft from the current

attitude orientation to the commanded orientation. The spacecraft can execute the control

sequence and achieve a final orientation without further updates. The final orientation

will contain sensor and disturbance errors. However, the important distinction is that the

classical control system produces one control signal, and holds that control signal.

Classical control systems cannot provide a control update without first obtaining a

spacecraft state condition, one control command per state determination.

The control algorithm may be able to provide acceptable performance in

applications where classical control systems fail. The proposed control algorithm

76

implementation would utilize two control storage register sets and a switch. The first

register set stores the first control solution. The spacecraft begins the maneuver,

executing the control signal stream in the first register set. As soon as the sensors can

provide a state update, the control algorithm generates a new control solution. In the

meantime, the spacecraft continues to execute the maneuver using the control signals in

the first register set. Once the new control solution is complete, the solution is stored into

the second register set. The switch changes and places the second register set into

service. The spacecraft torque devices then receive the control commands stored in the

second register set. The process continues until the spacecraft reaches the commanded

orientation.

2. C to VHDL Compilers/Function Generators

Both academia and the private sector are pursuing the development of C to VHDL

compilers. In the academia world, the University of California campuses of Irvine and

San Diego have collaborated and developed a C to VHDL compiler, SPARK64, with

private sector research support. Nallatech will soon release their C to VHDL function

generator, Dime-C. Dime-C will be integrated into their DIMEtalk-3 development

suite65. Both products are in an infancy stage. When developed further, these products

will provide users the high-level abstraction capability of C and allow rapid migration of

behavioral algorithms into hardware. Currently, the conversion of behavioral C

algorithms into hardware requires a design team to replicate the algorithm’s behavior.

Some industry professionals predict that efficient C to VHDL tools will remain beyond

reach. While not mature at this time, this technology is worth watching.

64 UC San Diego. Center for Embedded Computer Systems. Retrieved 01 Nov. 2005, from <

http://mesl.ucsd.edu/spark/>
65 Nallatech. FPGA Computing Application Development Environment–DIMEtalk3. Retrieved 14

Dec. 2005, from <http://www.nallatech.com/?node_id=1.2.2&id=19>

77

APPENDIX A: PHASE ONE MATERIALS

1. Master Files

a. NPSAT Model

b. DIDO_2003f

c. SNOPT

2. Modified Files

a. NPSAT Model

b. DIDO_2003f

c. SNOPT

3. Translated (Modified) Files

a. NPSAT Model

b. DIDO_2003f

c. SNOPT

4. MATLABTM Compiler 3 User’s Guide

5. LCC Programming Development Environment

a. Programming Manual

b. Install Files

6. GCC Compiler Manual

7. Control Algorithm Code Estimation

8. TextPad 4

9. Spark (XP Pro Version)

78

THIS PAGE INTENTIONALLY LEFT BLANK

79

APPENDIX B: PHASE TWO MATERIALS

1. MontaVista RTOS Product Sheet

2. Nucleus RTOS Product Sheet

3. PowerPC Microcontroller Product Selector

4. AMCC PowerPC 440EP Evaluation Kit

5. Xilinx Virtex-4 Product Family

6. Xilinx Virtex-4 FX Embedded Development Kit

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX C: PHASE THREE MATERIALS

1. Xilinx Virtex4 FX FPGA Device Combination Table

2. Nallatech Double-Precision Floating-point Core Product Sheet

3. Pentium® 4 Inner-product Test M-file

4. IPP Performance Estimator Excel File

5. IEEE VHDL Reference Manual 2002

6. VHDL Cookbook

7. IEEE RTL Synthesis Manual 2004

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

APPENDIX D: LOBATTO.M (MATLABTM)

Note: due to the file’s length, a partial reproduction is provided. Appendix

A’s CD-ROM contains the entire translated file.

function [x,w] = lobatto(n,a,b)
% [X, W] = LOBATTO(N) or [X, W] = LOBATTO(N,ALPHA,BETA):
%
% Computes abscissa and weights for the n-point Gauss-Jacobi-
Lobatto
% quadrature formula using the method of Gene H. Golub, Some
modified
% matrix eigenvalue problems, SIAM Rev. 15 (1973) 318-334. Another
early
% algorithm for this is by David Galant, An implementation of
Christoffel's
% formula in the theory of orthogonal polynomials, Math. Comp. 25
(1971)
% 111-113. All such algorithms should be "reviewed", in light of
recent
% improvements in tqr and Cholesky LR algorithms. But, this
algorithm
% "ain't bad".

% Copyright (c) 23 August 1997 by Bill Gragg. All rights reserved.
% Edited by I. Michael Ross, 17 April 2001

% lobatto calls subfunctions: mxtj, mxt and tqr.

% begin lobatto

 if nargin < 2
 a = 0; b = 0;
 end

 m = 2^(a + b + 1)*beta(a+1,b+1); us = a == b;

 n = n - 1; [a b] = mxtj(n,a,b); T = mxt(a,b);
 I = eye(n); e = zeros(n,1); e(n) = 1;
 c = (T + I)\e; c = c(n); d = (T - I)\e;
 d = d(n); e = c - d; c = (c + d)/e;
 d = sqrt(2/e); a(n+1) = c; b(n) = d;
 [x u] = tqr(a,b); u = u'; w = m*u.^2;

% "Purify" formulas in the ultraspherical case.

 if us
 x = (x - flipud(x))/2; w = (w + flipud(w))/2;
 end

84

% Consider sorting x for future reference
% end lobatto
%
% BEGIN SUBFUNCTION MXTJ

function [a,b] = mxtj(n,alpha,beta)

% [a b] = mxtj(n,alpha,beta), [a b] = mxtj(n,alpha), [a b] = mxtj(n),
% T = mxtj(n,alpha,beta), T = mxtj(n,alpha) or T = mxtj(n):
%
% mxtj(n,alpha,beta): T = mxt(a,b) is the Jacobi matrix whose
characteristic
% polynomial p is (a nonzero scalar multiple of) the nth JACOBI
polynomial.
% The eigenvalues of T are the abscissas of the nth order Gauss-
Christoffel
% quadrature formula for the weight function ((1 - t)^alpha)((1 +
t)^beta) on
% the interval - 1 < t < 1. The Gauss-Christoffel weights are m(0)
times the
% squares of the first elements of the normalized eigenvectors of T,
where
% m(0) = b(0)^2 = B(alpha + 1,beta + 1)2^(alpha + beta - 1) is the
total mass.
% B is the beta function. The weight function is positive and
integrable if
% alpha + 1 > 0 and beta + 1 > 0.
%
% mxtj(n,alpha) takes beta = alpha. p is the nth ULTRASPHERICAL
polynomial,
% with weight function (1 - t^2)^alpha on the interval - 1 < t < 1.
Special
% cases are the CHEBYSHEV polynomial of the FIRST KIND, with alpha = -
1/2,
% and of the SECOND KIND, with alpha = 1/2.
%
% mxtj(n) takes alpha = beta = 0. p is the nth LEGENDRE polynomial,
with
% weight function w(t) = 1 on the interval - 1 < t < 1. The quadrature
% formula here is originally due to Gauss. Christoffel generalized
Gauss'
% formula to a wide class of weight functions. Because of this the
Gauss-
% Christoffel weights are usually called Christoffel numbers.

% Copyright (c) 2 February 1991 by Bill Gragg. All rights reserved.

% mxtj calls mxt.

% begin mxtj
 if nargin < 2 alpha = 0; end; if nargin < 3 beta = alpha;
end
 a = alpha; b = beta; c = a + b; d = b - a;
 s(1) = d/(c + 2); t(1) = (a + 1)*(b + 1)/(c + 2)^2/(c + 3);
 if n > 2
 d = c*d;

85

 n = (2:n)'; m = 2*n; mm = m - 1; mp = m + 1;
 s(n) = d./(c + m)./(c + (m - 2));
 t(n) = n.*(a + n).*(b + n).*(c + n)./(c + mm)./((c + m).^2)./(c
+ mp);
 end
 a = s(:); b = 2*sqrt(t(:));
 if nargout < 2 a = mxt(a,b); end
% end mxtj
%
% BEGIN SUBFUNCTION MXT

 function T = mxt(a,b,c)

% T = mxt(a,b,c) or T = mxt(a,b):
%
% T = mxt(a,b,c) is the TRIDIAGONAL MATRIX with diagonal elements
a(1:n),
% subdiagonal elements b(1:n-1) and superdiagonal elements c(1:n-
1).
%
% T = mxt(a,b) is the HERMITIAN tridiagonal matrix with diagonal
elements
% real(a(1:n)) and subdiagonal elements b(1:n-1).

% Copyright (c) 1 December 1990 by Bill Gragg. All rights
reserved.
% Revised 21 November 1992.

% mxt calls no extrinsic functions.

% begin mxt

 if nargin < 3
 a = real(a); c = b';
 end

 n = length(a); b = b(1:n-1); c = c(1:n-1); z = zeros(n-
1,1);

 if n < 500

 B = diag(b); B = [z' 0; B z]; C = diag(c); C = [z C;
0 z'];
 T = diag(a); T = T + B + C;

 else

 T = zeros(n);

 for k = 1:n-1
 T(k,k) = a(k); T(k+1,k) = b(k); T(k,k+1) = c(k);
 end

86

 T(n,n) = a(n);

 end
% end mxt
%
% BEGIN SUBFUNCTION TQR (note: TQR calls SGN)

 function [lam,U] = tqr(a,b,U)

% [lam u] = tqr(a,b) or [lam U] = tqr(a,b,U):
%
% [lam u] = tqr(a,b):
%
% The column lam contains the eigenvalues of the Hermitian
tridiagonal
% matrix T = mxt(a,b) computed by one version of the (real
symmetric) tqr
% algorithm with Wilkinson's shift. The column u contains the
first
% elements of the eigenvectors of T normalized to be nonnegative
and such
% that the eigenvectors are unit vectors. In practice this is an
O(n^2)
% process. If u is omitted only the eigenvalues are computed. The
% computed eigenvalues are real and are sorted to be nonincreasing.
%
% [lam U] = tqr(a,b,U):
%
% This replaces the input U by UV with V a matrix of orthonormal
eigen-
% vectors of T. If the input U is I the output U is V. If the
input U is
% unitary with AU = UT then the output U is unitary with AU = UD
and D =
% diag(lam).
%
% If the input U is e(1)' the output U is u'. If the input U is
% [e(1)'; e(n)'] the output U is [u'; v'] with v the column of last
% elements of the normalized eigenvectors. If the subdiagonal
elements of
% T are all nonzero then the elements of v alternate in sign, at
least
% mathematically.

% Copyright (c) 2 February 1991 by Bill Gragg. All rights
reserved.
% Revised 15 July 1994.
% begin tqr

File truncated here due to length!

87

APPENDIX E: LOBATTO.C (TRANSLATED)

Note: due to the file’s length, a partial reproduction is provided. Appendix

A’s CD-ROM contains the entire translated file.

/*

 * MATLAB Compiler: 3.0

 * Date: Thu Jul 21 18:35:55 2005

 * Arguments: "-B" "macro_default" "-O" "all" "-O" "fold_scalar_mxarrays:on"

 * "-O" "fold_non_scalar_mxarrays:on" "-O" "optimize_integer_for_loops:on" "-

O"

 * "array_indexing:on" "-O" "optimize_conditionals:on" "-t" "-A" "debugline:on"

 * "-L" "c" "-d"

 *

"C:\Ron_Moons\DIDO_Convert_to_C\DIDO_Working_Folder\DIDOmodules\Compiled

_Fold

 * ers\lobatto_compiled" "lobatto"

 */

#include "lobatto.h"

#include "beta.h"

#include "flipud.h"

#include "libmatlbm.h"

static mxArray * _mxarray0_;

static mxArray * _mxarray1_;

static mxArray * _mxarray2_;

static mxArray * _mxarray3_;

88

static mxArray * _mxarray4_;

static mxArray * _mxarray5_;

static mxArray * _mxarray6_;

static mxChar _array8_[7] = { 'c', 'o', 'm', 'p', 'a', 'c', 't' };

static mxArray * _mxarray7_;

static mxArray * _mxarray9_;

static mxArray * _mxarray10_;

static mxChar _array12_[45] = { 't', 'q', 'r', ' ', 'i', 't', 'e', 'r', 'a',

 't', 'i', 'o', 'n', ' ', 'd', 'i', 'd', ' ',

 'n', 'o', 't', ' ', 't', 'e', 'r', 'm', 'i',

 'n', 'a', 't', 'e', ' ', 'i', 'n', ' ', '1',

 '0', 'n', ' ', 's', 't', 'e', 'p', 's', '!' };

static mxArray * _mxarray11_;

void InitializeModule_lobatto(void) {

 mxarray0 = mclInitializeDouble(0.0);

 mxarray1 = mclInitializeDouble(2.0);

 mxarray2 = mclInitializeDouble(1.0);

 mxarray3 = mclInitializeDouble(3.0);

 mxarray4 = mclInitializeDouble(500.0);

 mxarray5 = mclInitializeDoubleVector(0, 0, (double *)NULL);

 mxarray6 = mclInitializeDouble(1024.0);

89

 mxarray7 = mclInitializeString(7, _array8_);

 mxarray9 = mclInitializeDouble(-1.0);

 mxarray10 = mclInitializeDouble(10.0);

 mxarray11 = mclInitializeString(45, _array12_);

}

void TerminateModule_lobatto(void) {

 mxDestroyArray(_mxarray11_);

 mxDestroyArray(_mxarray10_);

 mxDestroyArray(_mxarray9_);

 mxDestroyArray(_mxarray7_);

 mxDestroyArray(_mxarray6_);

 mxDestroyArray(_mxarray5_);

 mxDestroyArray(_mxarray4_);

 mxDestroyArray(_mxarray3_);

 mxDestroyArray(_mxarray2_);

 mxDestroyArray(_mxarray1_);

 mxDestroyArray(_mxarray0_);

}

static mxArray * mlfNLobatto_mxtj(int nargout,

 mxArray * * b,

 mxArray * n,

 mxArray * alpha,

 mxArray * beta);

90

static void mlxLobatto_mxtj(int nlhs,

 mxArray * plhs[],

 int nrhs,

 mxArray * prhs[]);

static mxArray * mlfLobatto_mxt(mxArray * a, mxArray * b, mxArray * c);

static void mlxLobatto_mxt(int nlhs,

 mxArray * plhs[],

 int nrhs,

 mxArray * prhs[]);

static mxArray * mlfNLobatto_tqr(int nargout,

 mxArray * * U,

 mxArray * a,

 mxArray * b,

 mxArray * U_in);

static void mlxLobatto_tqr(int nlhs,

 mxArray * plhs[],

 int nrhs,

 mxArray * prhs[]);

static mxArray * mlfLobatto_sgn(mxArray * Z1, mxArray * Z2);

static void mlxLobatto_sgn(int nlhs,

 mxArray * plhs[],

 int nrhs,

 mxArray * prhs[]); File truncated here

91

LIST OF REFERENCES

ARM®. ARM® Technical Support FAQ. Retrieved 18 Nov. 2005, from
<http://www.arm.com/support/vfp_support_code.html>

ARM®. ARM® VFP10 Coprocessor. Retrieved 18 Nov. 2005, from
<http://www.arm.com/products/CPUs/VFP10.html>

Axiom Manufacturing. CML-5485 Development Board with BDM. Retrieved 21 Nov.
2005, from < http://www.axman.com/cgi-bin/products.pl?ProdName=CML-
5485W;.State=Show>

Barr, Michael. (1999). Programming Embedded Systems (p. 9). Sebastopol, CA: O’Reilly
& Associates, Inc.

Bartos, Frank J. (2005). Chip Wars: ASICs Versus FPGAs. Control Engineering.
Retrieved 20 Nov. 2005, from < http://www.manufacturing.net/ctl/article/CA607224>

Brown, Stephen and Zvonko Vranesic. (2002) Fundamentals of Digital Logic with
Verilog Design. New York: McGraw-Hill.

Bursky, Dave. (2005). We Must Hold The Line On Soaring ASIC Design Costs.
Electronic Design. Retrieved 20 Nov. 2005, from
<http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=1955>.

Confluence. Confleunce Overview. Retrieved 26 Nov. 2005, from
< http://www.confluent.org/wiki/doku.php>

Dunn, Paul. Nallatech Double-Precision FP Cores. E-mail to Ron Moon. 23 Nov. 2005.

EMS Technologies. ESP603e PowerPC Space Processor Card Data Sheet. Retrieved 30
Nov. 2005, from < http://www.emsstg.com/pdf/esp603.pdf>

Murray, Walter. Personal interview. 21 Jan. 2005.

Fleming, A. (2004). Real-Time Optimal Slew Maneuver Design and Control. Monterey,
CA: Naval Postgraduate School.

Gazdik, Nate. “MicroBlazeTM Floating Point Unit.” E-mail to Ron Moon. 05 Dec. 2005.

GCC. GCC Homepage. Retrieved 27 Nov. 2005, from <http://gcc.gnu.org>

Gill, Philip E., Murray, Walter, and Saunders, Michael A. (2005). SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization. Society for Industrial and Applied
Mathematics Review (Vol. 47, No.1, pp. 99-131). Philadelphia: SIAM.

92

GNU Operating System. GNU Lesser General Public License. Retrieved 26 Nov. 2005,
from < http://www.gnu.org/copyleft/lesser.html>

Goldberg, David. (1991). What Every Computer Scientist Should Know About Floating-
Point Arithmetic. Sun Microsystems. Retrieved 30 Nov. 2005, from
 <http://docs.sun.com/source/806-3568/ncg_goldberg.html>

Houlihan, Paul. Phone conversation. 18 Mar. 2005.

Hwang, Enoch O. (2006). Digital Logic and Microprocessor Design with VHDL.
Canada: Thompson.

Jungkind, Dave. SEAKR Space Processor Cards. E-mail to Ron Moon. 06 Dec. 2005.

Kopp, R.E. (1962). George Leitman (Ed.) “Pontryagin Maximum Principle”, in
Optimization Techniques. New York: Academic Press, Inc.

Loomis, Herschel. Personal Interview. 23 Nov. 2005.

ModelSim®. Products List. Retrieved 11 Dec. 2005, from
 < http://www.model.com/products/60/default.asp>

Murecky, John. MontaVista Software, Inc. Phone conversation. 16 Sep. 2005.

Murray, Walter. Personal interview. 22 Apr. 2005.

Murray, Walter and I. M. Ross. Personal interview. 22 Apr. 05.

Nallatech. FPGA Computing Application Development Environment–DIMEtalk3.
Retrieved 14 Dec. 2005, from <http://www.nallatech.com/?node_id=1.2.2&id=19>

Nallahtech. Double-Precision Floating-Point Core. Retrieved 18 Mar. 2005, from
< http://www.nallatech.com/mediaLibrary/images/english/3269.pdf>

Nallahtech. Single-Precision Floating-Point Core. Retrieved 18 Mar. 2005, from
<http://www.nallatech.com/?node_id=1.2.2&id=20&searchTerm=single%20point%20flo
ating>

Noergaard, Tammy. (2005). Embedded Systems Architecture: A Comprehensive Guide
for Engineers and Programmers. Oxford: Elsevier, Inc.

Opencores Organization. CF Floating Point Multiplier. Retrieved 01 Aug. 2005, from<
http://www.opencores.org/projects.cgi/web/cf_fp_mul/overview>

Opencores Organization. CVS Howto. Retrieved 26 Nov 2005, from
< http://www.opencores.org/projects.cgi/web/opencores/cvs_howto>

93

Opencores Organization. HCSA Adder. Retrieved 01 Aug 2005, from
< http://www.opencores.org/projects.cgi/web/hsca_adder/overview>

Opencores Organization. Projects by category. Retrieved 01 Nov. 2005, from
< http://www.opencores.org/browse.cgi/by_category>

OpenCores Organization. Website. Retrieved 05 Mar. 2005, from <
http://www.opencores.org>

Quesenbury, Ann. MontaVista Software, Inc. Phone conversation. 16 Sep. 2005.
MontaVista Software, Inc. Linux Professional. Retrieved 16 Sep. 2005, from
 <http://www.mvista.com/products/pro/features.html>

Reynolds, Dennis. Phone conversation. 13 Dec. 2005.
UC San Diego. Center for Embedded Computer Systems. Retrieved 01 Nov. 2005, from
< http://mesl.ucsd.edu/spark/>

Rodreguiez, Thomas. “EV-440EP-WIN-01 Price Quote.” E-mail to Ron Moon. 02 Dec.
2005.

Ross, I. M. Personal interview. 21 Nov. 2005.

Ross, I.M., and Fahroo, F. (2002). User’s Manual for DIDO 2003: A MATLABTMTM
Application Package for Dynamic Optimization. Monterey, CA: Naval Postgraduate
School.

Ross I. M. and Fahroo, F. (2003). “Legendre Pseudospectral Approximations of Optimal
Control Problems,” Lecture Notes in Control and Information Sciences (Vol. 295). New
York: Springer-Verlag.

Sekhavat, P., Fleming A. and Ross, I. M. (2005, July). Time-Optimal Nonlinear
Feedback Control for NPSAT1 Sapcecraft. Proceedings of the 2005 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Monterey, CA.

The MathWorks. MATLABTM Compiler Release Notes Page. Retrieved 15 Nov. 2005,
from <http://www.mathworks.com/access/helpdesk/help/toolbox/
compiler/rn/compiler4_rn_fcs3.html>

The MathWorks. MATLABTM Compiler Online Guide. Retrieved 15 Nov. 2005, from
<http//:www.mathworks.com/access/helpdesk_r13/help/toolbox/compiler/compiler.html
>

The MathWorks. MATLABTM Product Page. Retrieved 10 Nov. 2005, from
<www.mathworks.com/access/helpdesk/help/toolbox/simulink/slref/embeddedMATLAB
TMfunction.html>

94

The MathWorks. MATLABTM Online Programming Documentation. Retrieved 17 Nov.
2005, from <http://www.mathworks.com/access/helpdesk/help/techdoc/

MATLABTM_prog/ch11_st3.html>

The MathWorks. SIMULINKTM Product Page. Retrieved 10 Nov. 2005, from
<www.mathworks.com/access/helpdesk/help/toolbox/simulink/sfg/f6-151.html>

Xilinx, Inc. Alliance Embedded Program Member List. Retrieved 29 Nov. 2005,
< http://www.xilinx.com/ise/embedded/epartners/listing.htm>

Xilinx, Inc. Design Entry and Synthesis. Retrieved 04 Dec. 2005, from
< http://toolbox.xilinx.com/docsan/xilinx7/books/data/docs/dev/dev0014_5.html>

Xilinx, Inc. MicroBlazeTM Floating-Point Unit. Retrieved 17 Nov. 2005, from
<http://www.xilinx.com/ipcenter/processor_central/microblaze/microblaze_fpu.htm#feat
ures>

Xilinx, Inc. Xilinx PowerPC & MicroBlazeTM Development Kit. Retrieved 30 Nov. 2005,
from
<http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?sGlobalNav
Pick=PRODUCTS&sSecondaryNavPick=Intellectual+Property&category=&iLanguageI
D=1&key=DO-ML403-EDK-ISE>

Xilinx, Inc. Xilinx Virtex-4 ML-403 Embedded Platform. Retrieved 11 Nov. 2005, from
<http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=HW-
V4-ML403-USA&sGlobalNavPick=PRODUCTS&sSecondaryNavPick=BOARDS>

95

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. I. Michael Ross
Naval Postgraduate School
Monterey, California

4. Herschel H. Loomis
Naval Postgraduate School
Monterey, California

5. LCDR Ron Moon
SPAWAR Space Field Activity
Falls Church, Virginia

